Roughing out concept of patent based temp curve

This commit is contained in:
Ben V. Brown
2019-10-07 18:20:09 +11:00
parent c1db22cb4a
commit c5f6f6d044
3 changed files with 227 additions and 1 deletions

View File

@@ -16,6 +16,7 @@
#include "stdlib.h"
#include "stm32f1xx_hal.h"
#include "string.h"
#include "TipThermoModel.h"
extern uint8_t PCBVersion;
// File local variables
extern uint32_t currentlyActiveTemperatureTarget;
@@ -647,7 +648,7 @@ void showDebugMenu(void) {
break;
case 6:
//Raw Tip
OLED::printNumber(getTipRawTemp(0), 6);
OLED::printNumber(TipThermoModel::convertTipRawADCToDegC(getTipRawTemp(0)), 6);
break;
case 7:
//Temp in C

View File

@@ -0,0 +1,205 @@
/*
* TipThermoModel.cpp
*
* Created on: 7 Oct 2019
* Author: ralim
*/
#include "TipThermoModel.h"
/*
* The hardware is laid out as a non-inverting op-amp
* There is a pullup of 39k(TS100) from the +ve input to 3.9V (1M pulup on TS100)
*
* The simplest case to model this, is to ignore the pullup resistors influence, and assume that its influence is mostly constant
* -> Tip resistance *does* change with temp, but this should be much less than the rest of the system.
*
* When a thermocouple is equal temperature at both sides (hot and cold junction), then the output should be 0uV
* Therefore, by measuring the uV when both are equal, the measured reading is the offset value.
* This is a mix of the pull-up resistor, combined with tip manufacturing differences.
*
* All of the thermocouple readings are based on this expired patent
* - > https://patents.google.com/patent/US6087631A/en
*
* This was bought to my attention by <Kuba Sztandera>
*/
#ifdef MODEL_TS100
#define OP_AMP_Rf 750*1000 /*750 Kilo-ohms -> From schematic, R1*/
#define OP_AMP_Rin 2370 /*2.37 Kilo-ohms -> From schematic, R2*/
#else
#define OP_AMP_Rf 180*1000 /*180 Kilo-ohms -> From schematic, R6*/
#define OP_AMP_Rin 2000 /*2.0 Kilo-ohms -> From schematic, R3*/
#endif
#define op_amp_gain_stage (1+(OP_AMP_Rf/OP_AMP_Rin))
uint32_t TipThermoModel::convertTipRawADCTouV(uint16_t rawADC) {
// This takes the raw ADC samples, converts these to uV
// Then divides this down by the gain to convert to the uV on the input to the op-amp (A+B terminals)
// Then remove the calibration value that is stored as a tip offset
uint32_t vddRailmVX10 = 33000; //TODO use ADC Vref to calculate this
// 4096 * 8 readings for full scale
// Convert the input ADC reading back into mV times 10 format.
uint32_t rawInputmVX10 = (rawADC * vddRailmVX10) / (4096 * 8);
uint32_t valueuV = rawInputmVX10 * 100; // shift into uV
//Now to divide this down by the gain
valueuV = (valueuV) / op_amp_gain_stage;
//Remove uV tipOffset
//TODO
return valueuV;
}
uint32_t TipThermoModel::convertTipRawADCToDegC(uint16_t rawADC) {
return convertuVToDegC(convertTipRawADCTouV(rawADC));
}
//Table that is designed to be walked to find the best sample for the lookup
struct HakkoThermocoupleLookup {
// 0 is the uV reading
// 1 is the deg C X10
// This was created from numbers transcribed from the patent by <Kuba Sztandera>
constexpr HakkoThermocoupleLookup() :
values() {
values[0][0] = 0;
values[0][1] = 0;
values[1][0] = 175;
values[1][1] = 100;
values[2][0] = 381;
values[2][1] = 200;
values[3][0] = 587;
values[3][1] = 300;
values[4][0] = 804;
values[4][1] = 400;
values[5][0] = 1005;
values[5][1] = 500;
values[6][0] = 1007;
values[6][1] = 600;
values[7][0] = 1107;
values[7][1] = 700;
values[8][0] = 1310;
values[8][1] = 800;
values[9][0] = 1522;
values[9][1] = 900;
values[10][0] = 1731;
values[10][1] = 1000;
values[11][0] = 1939;
values[11][1] = 1100;
values[12][0] = 2079;
values[12][1] = 1200;
values[13][0] = 2265;
values[13][1] = 1300;
values[14][0] = 2470;
values[14][1] = 1400;
values[15][0] = 2676;
values[15][1] = 1500;
values[16][0] = 2899;
values[16][1] = 1600;
values[17][0] = 3081;
values[17][1] = 1700;
values[18][0] = 3186;
values[18][1] = 1800;
values[19][0] = 3422;
values[19][1] = 1900;
values[20][0] = 3622;
values[20][1] = 2000;
values[21][0] = 3830;
values[21][1] = 2100;
values[22][0] = 4044;
values[22][1] = 2200;
values[23][0] = 4400;
values[23][1] = 2300;
values[24][0] = 4691;
values[24][1] = 2400;
values[25][0] = 4989;
values[25][1] = 2500;
values[26][0] = 5289;
values[26][1] = 2600;
values[27][0] = 5583;
values[27][1] = 2700;
values[28][0] = 5879;
values[28][1] = 2800;
values[29][0] = 6075;
values[29][1] = 2900;
values[30][0] = 6332;
values[30][1] = 3000;
values[31][0] = 6521;
values[31][1] = 3100;
values[32][0] = 6724;
values[32][1] = 3200;
values[33][0] = 6929;
values[33][1] = 3300;
values[34][0] = 7132;
values[34][1] = 3400;
values[35][0] = 7356;
values[35][1] = 3500;
values[36][0] = 7561;
values[36][1] = 3600;
values[37][0] = 7774;
values[37][1] = 3700;
values[38][0] = 7992;
values[38][1] = 3800;
values[39][0] = 8200;
values[39][1] = 3900;
values[40][0] = 8410;
values[40][1] = 4000;
values[41][0] = 8626;
values[41][1] = 4100;
values[42][0] = 8849;
values[42][1] = 4200;
values[43][0] = 9060;
values[43][1] = 4300;
values[44][0] = 9271;
values[44][1] = 4400;
values[45][0] = 9531;
values[45][1] = 4500;
values[46][0] = 9748;
values[46][1] = 4600;
values[47][0] = 10210;
values[47][1] = 4700;
values[48][0] = 10219;
values[48][1] = 4800;
values[49][0] = 10429;
values[49][1] = 4900;
values[50][0] = 10649;
values[50][1] = 5000;
}
uint32_t count = 51;
uint32_t values[51][2];
};
constexpr auto ThermalTable = HakkoThermocoupleLookup();
//Extrapolate between two points
// [x1, y1] = point 1
// [x2, y2] = point 2
// x = input value
// output is x's extrapolated y value
int32_t LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2,
int32_t x) {
return y1 + (((((x - x1) * 1000) / (x2 - x1)) * (y2 - y1))) / 1000;
}
uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) {
//Perform lookup on table of values to find the closest two measurement points, and then linearly interpolate these
//This assumes results in the table are increasing order
// TODO -> Should this be made into a binary search? Is it much faster??
for (uint32_t i = 1; i < ThermalTable.count; i++) {
if (((uint32_t) ThermalTable.values[i][0]) < tipuVDelta) {
//Then extrapolate
//Where i= the lower raw sample, i-1 is the higher raw sample
return LinearInterpolate( //
ThermalTable.values[i][0], // x1
ThermalTable.values[i][1], // y1
ThermalTable.values[i - 1][0], // x2
ThermalTable.values[i - 1][1], // y2
tipuVDelta); // raw sample to be interpolated
}
}
return 5000;
}

View File

@@ -0,0 +1,20 @@
/*
* TipThermoModel.h
*
* Created on: 7 Oct 2019
* Author: ralim
*/
#ifndef SRC_TIPTHERMOMODEL_H_
#define SRC_TIPTHERMOMODEL_H_
#include "stdint.h"
#include "hardware.h"
class TipThermoModel {
public:
//Returns the uV of the tip reading before the op-amp compensating for pullups
static uint32_t convertTipRawADCTouV(uint16_t rawADC);
static uint32_t convertTipRawADCToDegC(uint16_t rawADC);
static uint32_t convertuVToDegC(uint32_t tipuVDelta);
};
#endif /* SRC_TIPTHERMOMODEL_H_ */