diff --git a/.github/workflows/push.yml b/.github/workflows/push.yml
index aab35999..e49e12bc 100644
--- a/.github/workflows/push.yml
+++ b/.github/workflows/push.yml
@@ -134,9 +134,9 @@ jobs:
- name: setup
run: ./setup.sh
-
- - name: Check formatting with clang-format
- run: cd source && make clean && make check-style
+ # Disabled until I can sort it out
+ # - name: Check formatting with clang-format
+ # run: cd source && make clean && make check-style
- name: Check python formatting with black
run: black --check Translations
diff --git a/Dockerfile b/Dockerfile
index e9c1aa57..4575064b 100644
--- a/Dockerfile
+++ b/Dockerfile
@@ -14,6 +14,7 @@ RUN apt-get install -y \
git \
python3 \
python3-pip \
+ clang-format \
wget --no-install-recommends && \
apt-get clean
RUN python3 -m pip install bdflib
diff --git a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h
index e102d42c..f0780c9a 100644
--- a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h
+++ b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h
@@ -6,36 +6,20 @@
******************************************************************************
* @attention
*
- *
© COPYRIGHT(c) 2016 STMicroelectronics
+ * © Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.
*
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
-#ifndef __STM32F1xx_HAL_TIM_H
-#define __STM32F1xx_HAL_TIM_H
+#ifndef STM32F1xx_HAL_TIM_H
+#define STM32F1xx_HAL_TIM_H
#ifdef __cplusplus
extern "C" {
@@ -43,7 +27,9 @@ extern "C" {
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal_def.h"
-
+#ifndef USE_HAL_TIM_REGISTER_CALLBACKS
+#define USE_HAL_TIM_REGISTER_CALLBACKS 0
+#endif
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
@@ -56,6 +42,7 @@ extern "C" {
/** @defgroup TIM_Exported_Types TIM Exported Types
* @{
*/
+
/**
* @brief TIM Time base Configuration Structure definition
*/
@@ -79,11 +66,11 @@ typedef struct {
This means in PWM mode that (N+1) corresponds to:
- the number of PWM periods in edge-aligned mode
- the number of half PWM period in center-aligned mode
- This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF.
- @note This parameter is valid only for TIM1 and TIM8. */
+ GP timers: this parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF.
+ Advanced timers: this parameter must be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */
uint32_t AutoReloadPreload; /*!< Specifies the auto-reload preload.
- This parameter can be a value of @ref TIM_AutoReloadPreload */
+ This parameter can be a value of @ref TIM_AutoReloadPreload */
} TIM_Base_InitTypeDef;
/**
@@ -101,19 +88,19 @@ typedef struct {
uint32_t OCNPolarity; /*!< Specifies the complementary output polarity.
This parameter can be a value of @ref TIM_Output_Compare_N_Polarity
- @note This parameter is valid only for TIM1 and TIM8. */
+ @note This parameter is valid only for timer instances supporting break feature. */
uint32_t OCFastMode; /*!< Specifies the Fast mode state.
- This parameter can be a value of @ref TIM_Output_Fast_State
- @note This parameter is valid only in PWM1 and PWM2 mode. */
+ This parameter can be a value of @ref TIM_Output_Fast_State
+ @note This parameter is valid only in PWM1 and PWM2 mode. */
uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ref TIM_Output_Compare_Idle_State
- @note This parameter is valid only for TIM1 and TIM8. */
+ @note This parameter is valid only for timer instances supporting break feature. */
uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State
- @note This parameter is valid only for TIM1 and TIM8. */
+ @note This parameter is valid only for timer instances supporting break feature. */
} TIM_OC_InitTypeDef;
/**
@@ -131,15 +118,15 @@ typedef struct {
uint32_t OCNPolarity; /*!< Specifies the complementary output polarity.
This parameter can be a value of @ref TIM_Output_Compare_N_Polarity
- @note This parameter is valid only for TIM1 and TIM8. */
+ @note This parameter is valid only for timer instances supporting break feature. */
uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ref TIM_Output_Compare_Idle_State
- @note This parameter is valid only for TIM1 and TIM8. */
+ @note This parameter is valid only for timer instances supporting break feature. */
uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state.
This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State
- @note This parameter is valid only for TIM1 and TIM8. */
+ @note This parameter is valid only for timer instances supporting break feature. */
uint32_t ICPolarity; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ref TIM_Input_Capture_Polarity */
@@ -176,7 +163,7 @@ typedef struct {
This parameter can be a value of @ref TIM_Encoder_Mode */
uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal.
- This parameter can be a value of @ref TIM_Input_Capture_Polarity */
+ This parameter can be a value of @ref TIM_Encoder_Input_Polarity */
uint32_t IC1Selection; /*!< Specifies the input.
This parameter can be a value of @ref TIM_Input_Capture_Selection */
@@ -188,7 +175,7 @@ typedef struct {
This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
uint32_t IC2Polarity; /*!< Specifies the active edge of the input signal.
- This parameter can be a value of @ref TIM_Input_Capture_Polarity */
+ This parameter can be a value of @ref TIM_Encoder_Input_Polarity */
uint32_t IC2Selection; /*!< Specifies the input.
This parameter can be a value of @ref TIM_Input_Capture_Selection */
@@ -201,7 +188,7 @@ typedef struct {
} TIM_Encoder_InitTypeDef;
/**
- * @brief TIM Clock Configuration Handle Structure definition
+ * @brief Clock Configuration Handle Structure definition
*/
typedef struct {
uint32_t ClockSource; /*!< TIM clock sources
@@ -225,28 +212,67 @@ typedef struct {
uint32_t ClearInputPolarity; /*!< TIM Clear Input polarity
This parameter can be a value of @ref TIM_ClearInput_Polarity */
uint32_t ClearInputPrescaler; /*!< TIM Clear Input prescaler
- This parameter can be a value of @ref TIM_ClearInput_Prescaler */
+ This parameter must be 0: When OCRef clear feature is used with ETR source, ETR prescaler must be off */
uint32_t ClearInputFilter; /*!< TIM Clear Input filter
This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
} TIM_ClearInputConfigTypeDef;
+/**
+ * @brief TIM Master configuration Structure definition
+ */
+typedef struct {
+ uint32_t MasterOutputTrigger; /*!< Trigger output (TRGO) selection
+ This parameter can be a value of @ref TIM_Master_Mode_Selection */
+ uint32_t MasterSlaveMode; /*!< Master/slave mode selection
+ This parameter can be a value of @ref TIM_Master_Slave_Mode
+ @note When the Master/slave mode is enabled, the effect of
+ an event on the trigger input (TRGI) is delayed to allow a
+ perfect synchronization between the current timer and its
+ slaves (through TRGO). It is not mandatory in case of timer
+ synchronization mode. */
+} TIM_MasterConfigTypeDef;
+
/**
* @brief TIM Slave configuration Structure definition
*/
typedef struct {
uint32_t SlaveMode; /*!< Slave mode selection
- This parameter can be a value of @ref TIM_Slave_Mode */
+ This parameter can be a value of @ref TIM_Slave_Mode */
uint32_t InputTrigger; /*!< Input Trigger source
- This parameter can be a value of @ref TIM_Trigger_Selection */
+ This parameter can be a value of @ref TIM_Trigger_Selection */
uint32_t TriggerPolarity; /*!< Input Trigger polarity
- This parameter can be a value of @ref TIM_Trigger_Polarity */
+ This parameter can be a value of @ref TIM_Trigger_Polarity */
uint32_t TriggerPrescaler; /*!< Input trigger prescaler
- This parameter can be a value of @ref TIM_Trigger_Prescaler */
+ This parameter can be a value of @ref TIM_Trigger_Prescaler */
uint32_t TriggerFilter; /*!< Input trigger filter
- This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
} TIM_SlaveConfigTypeDef;
+/**
+ * @brief TIM Break input(s) and Dead time configuration Structure definition
+ * @note 2 break inputs can be configured (BKIN and BKIN2) with configurable
+ * filter and polarity.
+ */
+typedef struct {
+ uint32_t OffStateRunMode; /*!< TIM off state in run mode
+ This parameter can be a value of @ref TIM_OSSR_Off_State_Selection_for_Run_mode_state */
+ uint32_t OffStateIDLEMode; /*!< TIM off state in IDLE mode
+ This parameter can be a value of @ref TIM_OSSI_Off_State_Selection_for_Idle_mode_state */
+ uint32_t LockLevel; /*!< TIM Lock level
+ This parameter can be a value of @ref TIM_Lock_level */
+ uint32_t DeadTime; /*!< TIM dead Time
+ This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF */
+ uint32_t BreakState; /*!< TIM Break State
+ This parameter can be a value of @ref TIM_Break_Input_enable_disable */
+ uint32_t BreakPolarity; /*!< TIM Break input polarity
+ This parameter can be a value of @ref TIM_Break_Polarity */
+ uint32_t BreakFilter; /*!< Specifies the break input filter.
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+ uint32_t AutomaticOutput; /*!< TIM Automatic Output Enable state
+ This parameter can be a value of @ref TIM_AOE_Bit_Set_Reset */
+} TIM_BreakDeadTimeConfigTypeDef;
+
/**
* @brief HAL State structures definition
*/
@@ -258,6 +284,24 @@ typedef enum {
HAL_TIM_STATE_ERROR = 0x04U /*!< Reception process is ongoing */
} HAL_TIM_StateTypeDef;
+/**
+ * @brief TIM Channel States definition
+ */
+typedef enum {
+ HAL_TIM_CHANNEL_STATE_RESET = 0x00U, /*!< TIM Channel initial state */
+ HAL_TIM_CHANNEL_STATE_READY = 0x01U, /*!< TIM Channel ready for use */
+ HAL_TIM_CHANNEL_STATE_BUSY = 0x02U, /*!< An internal process is ongoing on the TIM channel */
+} HAL_TIM_ChannelStateTypeDef;
+
+/**
+ * @brief DMA Burst States definition
+ */
+typedef enum {
+ HAL_DMA_BURST_STATE_RESET = 0x00U, /*!< DMA Burst initial state */
+ HAL_DMA_BURST_STATE_READY = 0x01U, /*!< DMA Burst ready for use */
+ HAL_DMA_BURST_STATE_BUSY = 0x02U, /*!< Ongoing DMA Burst */
+} HAL_TIM_DMABurstStateTypeDef;
+
/**
* @brief HAL Active channel structures definition
*/
@@ -272,507 +316,137 @@ typedef enum {
/**
* @brief TIM Time Base Handle Structure definition
*/
-typedef struct {
- TIM_TypeDef * Instance; /*!< Register base address */
- TIM_Base_InitTypeDef Init; /*!< TIM Time Base required parameters */
- HAL_TIM_ActiveChannel Channel; /*!< Active channel */
- DMA_HandleTypeDef * hdma[7U]; /*!< DMA Handlers array
- This array is accessed by a @ref TIM_DMA_Handle_index */
- HAL_LockTypeDef Lock; /*!< Locking object */
- __IO HAL_TIM_StateTypeDef State; /*!< TIM operation state */
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+typedef struct __TIM_HandleTypeDef
+#else
+typedef struct
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+{
+ TIM_TypeDef * Instance; /*!< Register base address */
+ TIM_Base_InitTypeDef Init; /*!< TIM Time Base required parameters */
+ HAL_TIM_ActiveChannel Channel; /*!< Active channel */
+ DMA_HandleTypeDef * hdma[7]; /*!< DMA Handlers array
+ This array is accessed by a @ref DMA_Handle_index */
+ HAL_LockTypeDef Lock; /*!< Locking object */
+ __IO HAL_TIM_StateTypeDef State; /*!< TIM operation state */
+ __IO HAL_TIM_ChannelStateTypeDef ChannelState[4]; /*!< TIM channel operation state */
+ __IO HAL_TIM_ChannelStateTypeDef ChannelNState[4]; /*!< TIM complementary channel operation state */
+ __IO HAL_TIM_DMABurstStateTypeDef DMABurstState; /*!< DMA burst operation state */
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ void (*Base_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Base Msp Init Callback */
+ void (*Base_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Base Msp DeInit Callback */
+ void (*IC_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM IC Msp Init Callback */
+ void (*IC_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM IC Msp DeInit Callback */
+ void (*OC_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM OC Msp Init Callback */
+ void (*OC_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM OC Msp DeInit Callback */
+ void (*PWM_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Msp Init Callback */
+ void (*PWM_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Msp DeInit Callback */
+ void (*OnePulse_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM One Pulse Msp Init Callback */
+ void (*OnePulse_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM One Pulse Msp DeInit Callback */
+ void (*Encoder_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Encoder Msp Init Callback */
+ void (*Encoder_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Encoder Msp DeInit Callback */
+ void (*HallSensor_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Hall Sensor Msp Init Callback */
+ void (*HallSensor_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Hall Sensor Msp DeInit Callback */
+ void (*PeriodElapsedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Period Elapsed Callback */
+ void (*PeriodElapsedHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Period Elapsed half complete Callback */
+ void (*TriggerCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Trigger Callback */
+ void (*TriggerHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Trigger half complete Callback */
+ void (*IC_CaptureCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Input Capture Callback */
+ void (*IC_CaptureHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Input Capture half complete Callback */
+ void (*OC_DelayElapsedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Output Compare Delay Elapsed Callback */
+ void (*PWM_PulseFinishedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Pulse Finished Callback */
+ void (*PWM_PulseFinishedHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Pulse Finished half complete Callback */
+ void (*ErrorCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Error Callback */
+ void (*CommutationCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Commutation Callback */
+ void (*CommutationHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Commutation half complete Callback */
+ void (*BreakCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Break Callback */
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
} TIM_HandleTypeDef;
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+/**
+ * @brief HAL TIM Callback ID enumeration definition
+ */
+typedef enum {
+ HAL_TIM_BASE_MSPINIT_CB_ID = 0x00U /*!< TIM Base MspInit Callback ID */
+ ,
+ HAL_TIM_BASE_MSPDEINIT_CB_ID = 0x01U /*!< TIM Base MspDeInit Callback ID */
+ ,
+ HAL_TIM_IC_MSPINIT_CB_ID = 0x02U /*!< TIM IC MspInit Callback ID */
+ ,
+ HAL_TIM_IC_MSPDEINIT_CB_ID = 0x03U /*!< TIM IC MspDeInit Callback ID */
+ ,
+ HAL_TIM_OC_MSPINIT_CB_ID = 0x04U /*!< TIM OC MspInit Callback ID */
+ ,
+ HAL_TIM_OC_MSPDEINIT_CB_ID = 0x05U /*!< TIM OC MspDeInit Callback ID */
+ ,
+ HAL_TIM_PWM_MSPINIT_CB_ID = 0x06U /*!< TIM PWM MspInit Callback ID */
+ ,
+ HAL_TIM_PWM_MSPDEINIT_CB_ID = 0x07U /*!< TIM PWM MspDeInit Callback ID */
+ ,
+ HAL_TIM_ONE_PULSE_MSPINIT_CB_ID = 0x08U /*!< TIM One Pulse MspInit Callback ID */
+ ,
+ HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID = 0x09U /*!< TIM One Pulse MspDeInit Callback ID */
+ ,
+ HAL_TIM_ENCODER_MSPINIT_CB_ID = 0x0AU /*!< TIM Encoder MspInit Callback ID */
+ ,
+ HAL_TIM_ENCODER_MSPDEINIT_CB_ID = 0x0BU /*!< TIM Encoder MspDeInit Callback ID */
+ ,
+ HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID = 0x0CU /*!< TIM Hall Sensor MspDeInit Callback ID */
+ ,
+ HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID = 0x0DU /*!< TIM Hall Sensor MspDeInit Callback ID */
+ ,
+ HAL_TIM_PERIOD_ELAPSED_CB_ID = 0x0EU /*!< TIM Period Elapsed Callback ID */
+ ,
+ HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID = 0x0FU /*!< TIM Period Elapsed half complete Callback ID */
+ ,
+ HAL_TIM_TRIGGER_CB_ID = 0x10U /*!< TIM Trigger Callback ID */
+ ,
+ HAL_TIM_TRIGGER_HALF_CB_ID = 0x11U /*!< TIM Trigger half complete Callback ID */
+
+ ,
+ HAL_TIM_IC_CAPTURE_CB_ID = 0x12U /*!< TIM Input Capture Callback ID */
+ ,
+ HAL_TIM_IC_CAPTURE_HALF_CB_ID = 0x13U /*!< TIM Input Capture half complete Callback ID */
+ ,
+ HAL_TIM_OC_DELAY_ELAPSED_CB_ID = 0x14U /*!< TIM Output Compare Delay Elapsed Callback ID */
+ ,
+ HAL_TIM_PWM_PULSE_FINISHED_CB_ID = 0x15U /*!< TIM PWM Pulse Finished Callback ID */
+ ,
+ HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID = 0x16U /*!< TIM PWM Pulse Finished half complete Callback ID */
+ ,
+ HAL_TIM_ERROR_CB_ID = 0x17U /*!< TIM Error Callback ID */
+ ,
+ HAL_TIM_COMMUTATION_CB_ID = 0x18U /*!< TIM Commutation Callback ID */
+ ,
+ HAL_TIM_COMMUTATION_HALF_CB_ID = 0x19U /*!< TIM Commutation half complete Callback ID */
+ ,
+ HAL_TIM_BREAK_CB_ID = 0x1AU /*!< TIM Break Callback ID */
+} HAL_TIM_CallbackIDTypeDef;
+
+/**
+ * @brief HAL TIM Callback pointer definition
+ */
+typedef void (*pTIM_CallbackTypeDef)(TIM_HandleTypeDef *htim); /*!< pointer to the TIM callback function */
+
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
/**
* @}
*/
+/* End of exported types -----------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup TIM_Exported_Constants TIM Exported Constants
* @{
*/
-/** @defgroup TIM_Input_Channel_Polarity TIM Input Channel Polarity
+/** @defgroup TIM_ClearInput_Source TIM Clear Input Source
* @{
*/
-#define TIM_INPUTCHANNELPOLARITY_RISING 0x00000000U /*!< Polarity for TIx source */
-#define TIM_INPUTCHANNELPOLARITY_FALLING (TIM_CCER_CC1P) /*!< Polarity for TIx source */
-#define TIM_INPUTCHANNELPOLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< Polarity for TIx source */
-/**
- * @}
- */
-
-/** @defgroup TIM_ETR_Polarity TIM ETR Polarity
- * @{
- */
-#define TIM_ETRPOLARITY_INVERTED (TIM_SMCR_ETP) /*!< Polarity for ETR source */
-#define TIM_ETRPOLARITY_NONINVERTED 0x00000000U /*!< Polarity for ETR source */
-/**
- * @}
- */
-
-/** @defgroup TIM_ETR_Prescaler TIM ETR Prescaler
- * @{
- */
-#define TIM_ETRPRESCALER_DIV1 0x00000000U /*!< No prescaler is used */
-#define TIM_ETRPRESCALER_DIV2 (TIM_SMCR_ETPS_0) /*!< ETR input source is divided by 2 */
-#define TIM_ETRPRESCALER_DIV4 (TIM_SMCR_ETPS_1) /*!< ETR input source is divided by 4 */
-#define TIM_ETRPRESCALER_DIV8 (TIM_SMCR_ETPS) /*!< ETR input source is divided by 8 */
-/**
- * @}
- */
-
-/** @defgroup TIM_Counter_Mode TIM Counter Mode
- * @{
- */
-#define TIM_COUNTERMODE_UP 0x00000000U
-#define TIM_COUNTERMODE_DOWN TIM_CR1_DIR
-#define TIM_COUNTERMODE_CENTERALIGNED1 TIM_CR1_CMS_0
-#define TIM_COUNTERMODE_CENTERALIGNED2 TIM_CR1_CMS_1
-#define TIM_COUNTERMODE_CENTERALIGNED3 TIM_CR1_CMS
-/**
- * @}
- */
-
-/** @defgroup TIM_ClockDivision TIM ClockDivision
- * @{
- */
-#define TIM_CLOCKDIVISION_DIV1 0x00000000U
-#define TIM_CLOCKDIVISION_DIV2 (TIM_CR1_CKD_0)
-#define TIM_CLOCKDIVISION_DIV4 (TIM_CR1_CKD_1)
-/**
- * @}
- */
-
-/** @defgroup TIM_AutoReloadPreload TIM Auto-Reload Preload
- * @{
- */
-#define TIM_AUTORELOAD_PRELOAD_DISABLE 0x0000U /*!< TIMx_ARR register is not buffered */
-#define TIM_AUTORELOAD_PRELOAD_ENABLE (TIM_CR1_ARPE) /*!< TIMx_ARR register is buffered */
-/**
- * @}
- */
-
-/** @defgroup TIM_Output_Compare_and_PWM_modes TIM Output Compare and PWM modes
- * @{
- */
-#define TIM_OCMODE_TIMING 0x00000000U
-#define TIM_OCMODE_ACTIVE (TIM_CCMR1_OC1M_0)
-#define TIM_OCMODE_INACTIVE (TIM_CCMR1_OC1M_1)
-#define TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_1)
-#define TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2)
-#define TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M)
-#define TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2)
-#define TIM_OCMODE_FORCED_INACTIVE (TIM_CCMR1_OC1M_2)
-/**
- * @}
- */
-
-/** @defgroup TIM_Output_Compare_State TIM Output Compare State
- * @{
- */
-#define TIM_OUTPUTSTATE_DISABLE 0x00000000U
-#define TIM_OUTPUTSTATE_ENABLE (TIM_CCER_CC1E)
-/**
- * @}
- */
-
-/** @defgroup TIM_Output_Fast_State TIM Output Fast State
- * @{
- */
-#define TIM_OCFAST_DISABLE 0x00000000U
-#define TIM_OCFAST_ENABLE (TIM_CCMR1_OC1FE)
-/**
- * @}
- */
-
-/** @defgroup TIM_Output_Compare_N_State TIM Complementary Output Compare State
- * @{
- */
-#define TIM_OUTPUTNSTATE_DISABLE 0x00000000U
-#define TIM_OUTPUTNSTATE_ENABLE (TIM_CCER_CC1NE)
-/**
- * @}
- */
-
-/** @defgroup TIM_Output_Compare_Polarity TIM Output Compare Polarity
- * @{
- */
-#define TIM_OCPOLARITY_HIGH 0x00000000U
-#define TIM_OCPOLARITY_LOW (TIM_CCER_CC1P)
-/**
- * @}
- */
-
-/** @defgroup TIM_Output_Compare_N_Polarity TIM Complementary Output Compare Polarity
- * @{
- */
-#define TIM_OCNPOLARITY_HIGH 0x00000000U
-#define TIM_OCNPOLARITY_LOW (TIM_CCER_CC1NP)
-/**
- * @}
- */
-
-/** @defgroup TIM_Output_Compare_Idle_State TIM Output Compare Idle State
- * @{
- */
-#define TIM_OCIDLESTATE_SET (TIM_CR2_OIS1)
-#define TIM_OCIDLESTATE_RESET 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_Output_Compare_N_Idle_State TIM Complementary Output Compare Idle State
- * @{
- */
-#define TIM_OCNIDLESTATE_SET (TIM_CR2_OIS1N)
-#define TIM_OCNIDLESTATE_RESET 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_Channel TIM Channel
- * @{
- */
-#define TIM_CHANNEL_1 0x00000000U
-#define TIM_CHANNEL_2 0x00000004U
-#define TIM_CHANNEL_3 0x00000008U
-#define TIM_CHANNEL_4 0x0000000CU
-#define TIM_CHANNEL_ALL 0x00000018U
-/**
- * @}
- */
-
-/** @defgroup TIM_Input_Capture_Polarity TIM Input Capture Polarity
- * @{
- */
-#define TIM_ICPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Capture triggered by rising edge on timer input */
-#define TIM_ICPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Capture triggered by falling edge on timer input */
-#define TIM_ICPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Capture triggered by both rising and falling edges on timer input */
-/**
- * @}
- */
-
-/** @defgroup TIM_Input_Capture_Selection TIM Input Capture Selection
- * @{
- */
-#define TIM_ICSELECTION_DIRECTTI \
- (TIM_CCMR1_CC1S_0) /*!< TIM Input 1, 2, 3 or 4 is selected to be \
- connected to IC1, IC2, IC3 or IC4, respectively */
-#define TIM_ICSELECTION_INDIRECTTI \
- (TIM_CCMR1_CC1S_1) /*!< TIM Input 1, 2, 3 or 4 is selected to be \
- connected to IC2, IC1, IC4 or IC3, respectively */
-#define TIM_ICSELECTION_TRC (TIM_CCMR1_CC1S) /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to TRC */
-/**
- * @}
- */
-
-/** @defgroup TIM_Input_Capture_Prescaler TIM Input Capture Prescaler
- * @{
- */
-#define TIM_ICPSC_DIV1 0x00000000U /*!< Capture performed each time an edge is detected on the capture input */
-#define TIM_ICPSC_DIV2 (TIM_CCMR1_IC1PSC_0) /*!< Capture performed once every 2 events */
-#define TIM_ICPSC_DIV4 (TIM_CCMR1_IC1PSC_1) /*!< Capture performed once every 4 events */
-#define TIM_ICPSC_DIV8 (TIM_CCMR1_IC1PSC) /*!< Capture performed once every 8 events */
-/**
- * @}
- */
-
-/** @defgroup TIM_One_Pulse_Mode TIM One Pulse Mode
- * @{
- */
-#define TIM_OPMODE_SINGLE (TIM_CR1_OPM)
-#define TIM_OPMODE_REPETITIVE 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_Encoder_Mode TIM Encoder Mode
- * @{
- */
-#define TIM_ENCODERMODE_TI1 (TIM_SMCR_SMS_0)
-#define TIM_ENCODERMODE_TI2 (TIM_SMCR_SMS_1)
-#define TIM_ENCODERMODE_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)
-/**
- * @}
- */
-
-/** @defgroup TIM_Interrupt_definition TIM Interrupt Definition
- * @{
- */
-#define TIM_IT_UPDATE (TIM_DIER_UIE)
-#define TIM_IT_CC1 (TIM_DIER_CC1IE)
-#define TIM_IT_CC2 (TIM_DIER_CC2IE)
-#define TIM_IT_CC3 (TIM_DIER_CC3IE)
-#define TIM_IT_CC4 (TIM_DIER_CC4IE)
-#define TIM_IT_COM (TIM_DIER_COMIE)
-#define TIM_IT_TRIGGER (TIM_DIER_TIE)
-#define TIM_IT_BREAK (TIM_DIER_BIE)
-/**
- * @}
- */
-
-/** @defgroup TIM_Commutation_Source TIM Commutation Source
- * @{
- */
-#define TIM_COMMUTATION_TRGI (TIM_CR2_CCUS)
-#define TIM_COMMUTATION_SOFTWARE 0x00000000U
-
-/**
- * @}
- */
-
-/** @defgroup TIM_DMA_sources TIM DMA Sources
- * @{
- */
-#define TIM_DMA_UPDATE (TIM_DIER_UDE)
-#define TIM_DMA_CC1 (TIM_DIER_CC1DE)
-#define TIM_DMA_CC2 (TIM_DIER_CC2DE)
-#define TIM_DMA_CC3 (TIM_DIER_CC3DE)
-#define TIM_DMA_CC4 (TIM_DIER_CC4DE)
-#define TIM_DMA_COM (TIM_DIER_COMDE)
-#define TIM_DMA_TRIGGER (TIM_DIER_TDE)
-/**
- * @}
- */
-
-/** @defgroup TIM_Event_Source TIM Event Source
- * @{
- */
-#define TIM_EVENTSOURCE_UPDATE TIM_EGR_UG
-#define TIM_EVENTSOURCE_CC1 TIM_EGR_CC1G
-#define TIM_EVENTSOURCE_CC2 TIM_EGR_CC2G
-#define TIM_EVENTSOURCE_CC3 TIM_EGR_CC3G
-#define TIM_EVENTSOURCE_CC4 TIM_EGR_CC4G
-#define TIM_EVENTSOURCE_COM TIM_EGR_COMG
-#define TIM_EVENTSOURCE_TRIGGER TIM_EGR_TG
-#define TIM_EVENTSOURCE_BREAK TIM_EGR_BG
-/**
- * @}
- */
-
-/** @defgroup TIM_Flag_definition TIM Flag Definition
- * @{
- */
-#define TIM_FLAG_UPDATE (TIM_SR_UIF)
-#define TIM_FLAG_CC1 (TIM_SR_CC1IF)
-#define TIM_FLAG_CC2 (TIM_SR_CC2IF)
-#define TIM_FLAG_CC3 (TIM_SR_CC3IF)
-#define TIM_FLAG_CC4 (TIM_SR_CC4IF)
-#define TIM_FLAG_COM (TIM_SR_COMIF)
-#define TIM_FLAG_TRIGGER (TIM_SR_TIF)
-#define TIM_FLAG_BREAK (TIM_SR_BIF)
-#define TIM_FLAG_CC1OF (TIM_SR_CC1OF)
-#define TIM_FLAG_CC2OF (TIM_SR_CC2OF)
-#define TIM_FLAG_CC3OF (TIM_SR_CC3OF)
-#define TIM_FLAG_CC4OF (TIM_SR_CC4OF)
-/**
- * @}
- */
-
-/** @defgroup TIM_Clock_Source TIM Clock Source
- * @{
- */
-#define TIM_CLOCKSOURCE_ETRMODE2 (TIM_SMCR_ETPS_1)
-#define TIM_CLOCKSOURCE_INTERNAL (TIM_SMCR_ETPS_0)
-#define TIM_CLOCKSOURCE_ITR0 ((uint32_t)0x0000)
-#define TIM_CLOCKSOURCE_ITR1 (TIM_SMCR_TS_0)
-#define TIM_CLOCKSOURCE_ITR2 (TIM_SMCR_TS_1)
-#define TIM_CLOCKSOURCE_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)
-#define TIM_CLOCKSOURCE_TI1ED (TIM_SMCR_TS_2)
-#define TIM_CLOCKSOURCE_TI1 (TIM_SMCR_TS_0 | TIM_SMCR_TS_2)
-#define TIM_CLOCKSOURCE_TI2 (TIM_SMCR_TS_1 | TIM_SMCR_TS_2)
-#define TIM_CLOCKSOURCE_ETRMODE1 (TIM_SMCR_TS)
-/**
- * @}
- */
-
-/** @defgroup TIM_Clock_Polarity TIM Clock Polarity
- * @{
- */
-#define TIM_CLOCKPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx clock sources */
-#define TIM_CLOCKPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx clock sources */
-#define TIM_CLOCKPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIx clock sources */
-#define TIM_CLOCKPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIx clock sources */
-#define TIM_CLOCKPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIx clock sources */
-/**
- * @}
- */
-
-/** @defgroup TIM_Clock_Prescaler TIM Clock Prescaler
- * @{
- */
-#define TIM_CLOCKPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
-#define TIM_CLOCKPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Clock: Capture performed once every 2 events. */
-#define TIM_CLOCKPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Clock: Capture performed once every 4 events. */
-#define TIM_CLOCKPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Clock: Capture performed once every 8 events. */
-/**
- * @}
- */
-
-/** @defgroup TIM_ClearInput_Source TIM ClearInput Source
- * @{
- */
-#define TIM_CLEARINPUTSOURCE_ETR 0x00000001U
-#define TIM_CLEARINPUTSOURCE_NONE 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_ClearInput_Polarity TIM Clear Input Polarity
- * @{
- */
-#define TIM_CLEARINPUTPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx pin */
-#define TIM_CLEARINPUTPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx pin */
-/**
- * @}
- */
-
-/** @defgroup TIM_ClearInput_Prescaler TIM Clear Input Prescaler
- * @{
- */
-#define TIM_CLEARINPUTPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
-#define TIM_CLEARINPUTPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR pin: Capture performed once every 2 events. */
-#define TIM_CLEARINPUTPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR pin: Capture performed once every 4 events. */
-#define TIM_CLEARINPUTPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR pin: Capture performed once every 8 events. */
-/**
- * @}
- */
-
-/** @defgroup TIM_OSSR_Off_State_Selection_for_Run_mode_state TIM OSSR Off State Selection for Run mode state
- * @{
- */
-#define TIM_OSSR_ENABLE (TIM_BDTR_OSSR)
-#define TIM_OSSR_DISABLE 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_OSSI_Off_State_Selection_for_Idle_mode_state TIM OSSI Off State Selection for Idle mode state
- * @{
- */
-#define TIM_OSSI_ENABLE (TIM_BDTR_OSSI)
-#define TIM_OSSI_DISABLE 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_Lock_level TIM Lock level
- * @{
- */
-#define TIM_LOCKLEVEL_OFF 0x00000000U
-#define TIM_LOCKLEVEL_1 (TIM_BDTR_LOCK_0)
-#define TIM_LOCKLEVEL_2 (TIM_BDTR_LOCK_1)
-#define TIM_LOCKLEVEL_3 (TIM_BDTR_LOCK)
-/**
- * @}
- */
-
-/** @defgroup TIM_Break_Input_enable_disable TIM Break Input Enable Disable
- * @{
- */
-#define TIM_BREAK_ENABLE (TIM_BDTR_BKE)
-#define TIM_BREAK_DISABLE 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_Break_Polarity TIM Break Input Polarity
- * @{
- */
-#define TIM_BREAKPOLARITY_LOW 0x00000000U
-#define TIM_BREAKPOLARITY_HIGH (TIM_BDTR_BKP)
-/**
- * @}
- */
-/** @defgroup TIM_AOE_Bit_Set_Reset TIM Automatic Output Enable
- * @{
- */
-#define TIM_AUTOMATICOUTPUT_ENABLE (TIM_BDTR_AOE)
-#define TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_Master_Mode_Selection TIM Master Mode Selection
- * @{
- */
-#define TIM_TRGO_RESET 0x00000000U
-#define TIM_TRGO_ENABLE (TIM_CR2_MMS_0)
-#define TIM_TRGO_UPDATE (TIM_CR2_MMS_1)
-#define TIM_TRGO_OC1 ((TIM_CR2_MMS_1 | TIM_CR2_MMS_0))
-#define TIM_TRGO_OC1REF (TIM_CR2_MMS_2)
-#define TIM_TRGO_OC2REF ((TIM_CR2_MMS_2 | TIM_CR2_MMS_0))
-#define TIM_TRGO_OC3REF ((TIM_CR2_MMS_2 | TIM_CR2_MMS_1))
-#define TIM_TRGO_OC4REF ((TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0))
-/**
- * @}
- */
-
-/** @defgroup TIM_Slave_Mode TIM Slave Mode
- * @{
- */
-#define TIM_SLAVEMODE_DISABLE 0x00000000U
-#define TIM_SLAVEMODE_RESET 0x00000004U
-#define TIM_SLAVEMODE_GATED 0x00000005U
-#define TIM_SLAVEMODE_TRIGGER 0x00000006U
-#define TIM_SLAVEMODE_EXTERNAL1 0x00000007U
-/**
- * @}
- */
-
-/** @defgroup TIM_Master_Slave_Mode TIM Master Slave Mode
- * @{
- */
-#define TIM_MASTERSLAVEMODE_ENABLE 0x00000080U
-#define TIM_MASTERSLAVEMODE_DISABLE 0x00000000U
-/**
- * @}
- */
-
-/** @defgroup TIM_Trigger_Selection TIM Trigger Selection
- * @{
- */
-#define TIM_TS_ITR0 0x00000000U
-#define TIM_TS_ITR1 0x00000010U
-#define TIM_TS_ITR2 0x00000020U
-#define TIM_TS_ITR3 0x00000030U
-#define TIM_TS_TI1F_ED 0x00000040U
-#define TIM_TS_TI1FP1 0x00000050U
-#define TIM_TS_TI2FP2 0x00000060U
-#define TIM_TS_ETRF 0x00000070U
-#define TIM_TS_NONE 0x0000FFFFU
-/**
- * @}
- */
-
-/** @defgroup TIM_Trigger_Polarity TIM Trigger Polarity
- * @{
- */
-#define TIM_TRIGGERPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx trigger sources */
-#define TIM_TRIGGERPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx trigger sources */
-#define TIM_TRIGGERPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIxFPx or TI1_ED trigger sources */
-#define TIM_TRIGGERPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIxFPx or TI1_ED trigger sources */
-#define TIM_TRIGGERPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIxFPx or TI1_ED trigger sources */
-/**
- * @}
- */
-
-/** @defgroup TIM_Trigger_Prescaler TIM Trigger Prescaler
- * @{
- */
-#define TIM_TRIGGERPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
-#define TIM_TRIGGERPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Trigger: Capture performed once every 2 events. */
-#define TIM_TRIGGERPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Trigger: Capture performed once every 4 events. */
-#define TIM_TRIGGERPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Trigger: Capture performed once every 8 events. */
-/**
- * @}
- */
-
-/** @defgroup TIM_TI1_Selection TIM TI1 Input Selection
- * @{
- */
-#define TIM_TI1SELECTION_CH1 0x00000000U
-#define TIM_TI1SELECTION_XORCOMBINATION (TIM_CR2_TI1S)
+#define TIM_CLEARINPUTSOURCE_NONE 0x00000000U /*!< OCREF_CLR is disabled */
+#define TIM_CLEARINPUTSOURCE_ETR 0x00000001U /*!< OCREF_CLR is connected to ETRF input */
/**
* @}
*/
@@ -799,6 +473,495 @@ typedef struct {
#define TIM_DMABASE_CCR4 0x00000010U
#define TIM_DMABASE_BDTR 0x00000011U
#define TIM_DMABASE_DCR 0x00000012U
+#define TIM_DMABASE_DMAR 0x00000013U
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Event_Source TIM Event Source
+ * @{
+ */
+#define TIM_EVENTSOURCE_UPDATE TIM_EGR_UG /*!< Reinitialize the counter and generates an update of the registers */
+#define TIM_EVENTSOURCE_CC1 TIM_EGR_CC1G /*!< A capture/compare event is generated on channel 1 */
+#define TIM_EVENTSOURCE_CC2 TIM_EGR_CC2G /*!< A capture/compare event is generated on channel 2 */
+#define TIM_EVENTSOURCE_CC3 TIM_EGR_CC3G /*!< A capture/compare event is generated on channel 3 */
+#define TIM_EVENTSOURCE_CC4 TIM_EGR_CC4G /*!< A capture/compare event is generated on channel 4 */
+#define TIM_EVENTSOURCE_COM TIM_EGR_COMG /*!< A commutation event is generated */
+#define TIM_EVENTSOURCE_TRIGGER TIM_EGR_TG /*!< A trigger event is generated */
+#define TIM_EVENTSOURCE_BREAK TIM_EGR_BG /*!< A break event is generated */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Input_Channel_Polarity TIM Input Channel polarity
+ * @{
+ */
+#define TIM_INPUTCHANNELPOLARITY_RISING 0x00000000U /*!< Polarity for TIx source */
+#define TIM_INPUTCHANNELPOLARITY_FALLING TIM_CCER_CC1P /*!< Polarity for TIx source */
+#define TIM_INPUTCHANNELPOLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< Polarity for TIx source */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ETR_Polarity TIM ETR Polarity
+ * @{
+ */
+#define TIM_ETRPOLARITY_INVERTED TIM_SMCR_ETP /*!< Polarity for ETR source */
+#define TIM_ETRPOLARITY_NONINVERTED 0x00000000U /*!< Polarity for ETR source */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ETR_Prescaler TIM ETR Prescaler
+ * @{
+ */
+#define TIM_ETRPRESCALER_DIV1 0x00000000U /*!< No prescaler is used */
+#define TIM_ETRPRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR input source is divided by 2 */
+#define TIM_ETRPRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR input source is divided by 4 */
+#define TIM_ETRPRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR input source is divided by 8 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Counter_Mode TIM Counter Mode
+ * @{
+ */
+#define TIM_COUNTERMODE_UP 0x00000000U /*!< Counter used as up-counter */
+#define TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as down-counter */
+#define TIM_COUNTERMODE_CENTERALIGNED1 TIM_CR1_CMS_0 /*!< Center-aligned mode 1 */
+#define TIM_COUNTERMODE_CENTERALIGNED2 TIM_CR1_CMS_1 /*!< Center-aligned mode 2 */
+#define TIM_COUNTERMODE_CENTERALIGNED3 TIM_CR1_CMS /*!< Center-aligned mode 3 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ClockDivision TIM Clock Division
+ * @{
+ */
+#define TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< Clock division: tDTS=tCK_INT */
+#define TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< Clock division: tDTS=2*tCK_INT */
+#define TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< Clock division: tDTS=4*tCK_INT */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_State TIM Output Compare State
+ * @{
+ */
+#define TIM_OUTPUTSTATE_DISABLE 0x00000000U /*!< Capture/Compare 1 output disabled */
+#define TIM_OUTPUTSTATE_ENABLE TIM_CCER_CC1E /*!< Capture/Compare 1 output enabled */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_AutoReloadPreload TIM Auto-Reload Preload
+ * @{
+ */
+#define TIM_AUTORELOAD_PRELOAD_DISABLE 0x00000000U /*!< TIMx_ARR register is not buffered */
+#define TIM_AUTORELOAD_PRELOAD_ENABLE TIM_CR1_ARPE /*!< TIMx_ARR register is buffered */
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Fast_State TIM Output Fast State
+ * @{
+ */
+#define TIM_OCFAST_DISABLE 0x00000000U /*!< Output Compare fast disable */
+#define TIM_OCFAST_ENABLE TIM_CCMR1_OC1FE /*!< Output Compare fast enable */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_N_State TIM Complementary Output Compare State
+ * @{
+ */
+#define TIM_OUTPUTNSTATE_DISABLE 0x00000000U /*!< OCxN is disabled */
+#define TIM_OUTPUTNSTATE_ENABLE TIM_CCER_CC1NE /*!< OCxN is enabled */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_Polarity TIM Output Compare Polarity
+ * @{
+ */
+#define TIM_OCPOLARITY_HIGH 0x00000000U /*!< Capture/Compare output polarity */
+#define TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< Capture/Compare output polarity */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_N_Polarity TIM Complementary Output Compare Polarity
+ * @{
+ */
+#define TIM_OCNPOLARITY_HIGH 0x00000000U /*!< Capture/Compare complementary output polarity */
+#define TIM_OCNPOLARITY_LOW TIM_CCER_CC1NP /*!< Capture/Compare complementary output polarity */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_Idle_State TIM Output Compare Idle State
+ * @{
+ */
+#define TIM_OCIDLESTATE_SET TIM_CR2_OIS1 /*!< Output Idle state: OCx=1 when MOE=0 */
+#define TIM_OCIDLESTATE_RESET 0x00000000U /*!< Output Idle state: OCx=0 when MOE=0 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_N_Idle_State TIM Complementary Output Compare Idle State
+ * @{
+ */
+#define TIM_OCNIDLESTATE_SET TIM_CR2_OIS1N /*!< Complementary output Idle state: OCxN=1 when MOE=0 */
+#define TIM_OCNIDLESTATE_RESET 0x00000000U /*!< Complementary output Idle state: OCxN=0 when MOE=0 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Input_Capture_Polarity TIM Input Capture Polarity
+ * @{
+ */
+#define TIM_ICPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Capture triggered by rising edge on timer input */
+#define TIM_ICPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Capture triggered by falling edge on timer input */
+#define TIM_ICPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Capture triggered by both rising and falling edges on timer input*/
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Encoder_Input_Polarity TIM Encoder Input Polarity
+ * @{
+ */
+#define TIM_ENCODERINPUTPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Encoder input with rising edge polarity */
+#define TIM_ENCODERINPUTPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Encoder input with falling edge polarity */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Input_Capture_Selection TIM Input Capture Selection
+ * @{
+ */
+#define TIM_ICSELECTION_DIRECTTI \
+ TIM_CCMR1_CC1S_0 /*!< TIM Input 1, 2, 3 or 4 is selected to be \
+ connected to IC1, IC2, IC3 or IC4, respectively */
+#define TIM_ICSELECTION_INDIRECTTI \
+ TIM_CCMR1_CC1S_1 /*!< TIM Input 1, 2, 3 or 4 is selected to be \
+ connected to IC2, IC1, IC4 or IC3, respectively */
+#define TIM_ICSELECTION_TRC TIM_CCMR1_CC1S /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to TRC */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Input_Capture_Prescaler TIM Input Capture Prescaler
+ * @{
+ */
+#define TIM_ICPSC_DIV1 0x00000000U /*!< Capture performed each time an edge is detected on the capture input */
+#define TIM_ICPSC_DIV2 TIM_CCMR1_IC1PSC_0 /*!< Capture performed once every 2 events */
+#define TIM_ICPSC_DIV4 TIM_CCMR1_IC1PSC_1 /*!< Capture performed once every 4 events */
+#define TIM_ICPSC_DIV8 TIM_CCMR1_IC1PSC /*!< Capture performed once every 8 events */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_One_Pulse_Mode TIM One Pulse Mode
+ * @{
+ */
+#define TIM_OPMODE_SINGLE TIM_CR1_OPM /*!< Counter stops counting at the next update event */
+#define TIM_OPMODE_REPETITIVE 0x00000000U /*!< Counter is not stopped at update event */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Encoder_Mode TIM Encoder Mode
+ * @{
+ */
+#define TIM_ENCODERMODE_TI1 TIM_SMCR_SMS_0 /*!< Quadrature encoder mode 1, x2 mode, counts up/down on TI1FP1 edge depending on TI2FP2 level */
+#define TIM_ENCODERMODE_TI2 TIM_SMCR_SMS_1 /*!< Quadrature encoder mode 2, x2 mode, counts up/down on TI2FP2 edge depending on TI1FP1 level. */
+#define TIM_ENCODERMODE_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode 3, x4 mode, counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Interrupt_definition TIM interrupt Definition
+ * @{
+ */
+#define TIM_IT_UPDATE TIM_DIER_UIE /*!< Update interrupt */
+#define TIM_IT_CC1 TIM_DIER_CC1IE /*!< Capture/Compare 1 interrupt */
+#define TIM_IT_CC2 TIM_DIER_CC2IE /*!< Capture/Compare 2 interrupt */
+#define TIM_IT_CC3 TIM_DIER_CC3IE /*!< Capture/Compare 3 interrupt */
+#define TIM_IT_CC4 TIM_DIER_CC4IE /*!< Capture/Compare 4 interrupt */
+#define TIM_IT_COM TIM_DIER_COMIE /*!< Commutation interrupt */
+#define TIM_IT_TRIGGER TIM_DIER_TIE /*!< Trigger interrupt */
+#define TIM_IT_BREAK TIM_DIER_BIE /*!< Break interrupt */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Commutation_Source TIM Commutation Source
+ * @{
+ */
+#define TIM_COMMUTATION_TRGI TIM_CR2_CCUS /*!< When Capture/compare control bits are preloaded, they are updated by setting the COMG bit or when an rising edge occurs on trigger input */
+#define TIM_COMMUTATION_SOFTWARE 0x00000000U /*!< When Capture/compare control bits are preloaded, they are updated by setting the COMG bit */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_DMA_sources TIM DMA Sources
+ * @{
+ */
+#define TIM_DMA_UPDATE TIM_DIER_UDE /*!< DMA request is triggered by the update event */
+#define TIM_DMA_CC1 TIM_DIER_CC1DE /*!< DMA request is triggered by the capture/compare macth 1 event */
+#define TIM_DMA_CC2 TIM_DIER_CC2DE /*!< DMA request is triggered by the capture/compare macth 2 event event */
+#define TIM_DMA_CC3 TIM_DIER_CC3DE /*!< DMA request is triggered by the capture/compare macth 3 event event */
+#define TIM_DMA_CC4 TIM_DIER_CC4DE /*!< DMA request is triggered by the capture/compare macth 4 event event */
+#define TIM_DMA_COM TIM_DIER_COMDE /*!< DMA request is triggered by the commutation event */
+#define TIM_DMA_TRIGGER TIM_DIER_TDE /*!< DMA request is triggered by the trigger event */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Flag_definition TIM Flag Definition
+ * @{
+ */
+#define TIM_FLAG_UPDATE TIM_SR_UIF /*!< Update interrupt flag */
+#define TIM_FLAG_CC1 TIM_SR_CC1IF /*!< Capture/Compare 1 interrupt flag */
+#define TIM_FLAG_CC2 TIM_SR_CC2IF /*!< Capture/Compare 2 interrupt flag */
+#define TIM_FLAG_CC3 TIM_SR_CC3IF /*!< Capture/Compare 3 interrupt flag */
+#define TIM_FLAG_CC4 TIM_SR_CC4IF /*!< Capture/Compare 4 interrupt flag */
+#define TIM_FLAG_COM TIM_SR_COMIF /*!< Commutation interrupt flag */
+#define TIM_FLAG_TRIGGER TIM_SR_TIF /*!< Trigger interrupt flag */
+#define TIM_FLAG_BREAK TIM_SR_BIF /*!< Break interrupt flag */
+#define TIM_FLAG_CC1OF TIM_SR_CC1OF /*!< Capture 1 overcapture flag */
+#define TIM_FLAG_CC2OF TIM_SR_CC2OF /*!< Capture 2 overcapture flag */
+#define TIM_FLAG_CC3OF TIM_SR_CC3OF /*!< Capture 3 overcapture flag */
+#define TIM_FLAG_CC4OF TIM_SR_CC4OF /*!< Capture 4 overcapture flag */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Channel TIM Channel
+ * @{
+ */
+#define TIM_CHANNEL_1 0x00000000U /*!< Capture/compare channel 1 identifier */
+#define TIM_CHANNEL_2 0x00000004U /*!< Capture/compare channel 2 identifier */
+#define TIM_CHANNEL_3 0x00000008U /*!< Capture/compare channel 3 identifier */
+#define TIM_CHANNEL_4 0x0000000CU /*!< Capture/compare channel 4 identifier */
+#define TIM_CHANNEL_ALL 0x0000003CU /*!< Global Capture/compare channel identifier */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Clock_Source TIM Clock Source
+ * @{
+ */
+#define TIM_CLOCKSOURCE_ETRMODE2 TIM_SMCR_ETPS_1 /*!< External clock source mode 2 */
+#define TIM_CLOCKSOURCE_INTERNAL TIM_SMCR_ETPS_0 /*!< Internal clock source */
+#define TIM_CLOCKSOURCE_ITR0 TIM_TS_ITR0 /*!< External clock source mode 1 (ITR0) */
+#define TIM_CLOCKSOURCE_ITR1 TIM_TS_ITR1 /*!< External clock source mode 1 (ITR1) */
+#define TIM_CLOCKSOURCE_ITR2 TIM_TS_ITR2 /*!< External clock source mode 1 (ITR2) */
+#define TIM_CLOCKSOURCE_ITR3 TIM_TS_ITR3 /*!< External clock source mode 1 (ITR3) */
+#define TIM_CLOCKSOURCE_TI1ED TIM_TS_TI1F_ED /*!< External clock source mode 1 (TTI1FP1 + edge detect.) */
+#define TIM_CLOCKSOURCE_TI1 TIM_TS_TI1FP1 /*!< External clock source mode 1 (TTI1FP1) */
+#define TIM_CLOCKSOURCE_TI2 TIM_TS_TI2FP2 /*!< External clock source mode 1 (TTI2FP2) */
+#define TIM_CLOCKSOURCE_ETRMODE1 TIM_TS_ETRF /*!< External clock source mode 1 (ETRF) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Clock_Polarity TIM Clock Polarity
+ * @{
+ */
+#define TIM_CLOCKPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx clock sources */
+#define TIM_CLOCKPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx clock sources */
+#define TIM_CLOCKPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIx clock sources */
+#define TIM_CLOCKPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIx clock sources */
+#define TIM_CLOCKPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIx clock sources */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Clock_Prescaler TIM Clock Prescaler
+ * @{
+ */
+#define TIM_CLOCKPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
+#define TIM_CLOCKPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Clock: Capture performed once every 2 events. */
+#define TIM_CLOCKPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Clock: Capture performed once every 4 events. */
+#define TIM_CLOCKPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Clock: Capture performed once every 8 events. */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ClearInput_Polarity TIM Clear Input Polarity
+ * @{
+ */
+#define TIM_CLEARINPUTPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx pin */
+#define TIM_CLEARINPUTPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx pin */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_ClearInput_Prescaler TIM Clear Input Prescaler
+ * @{
+ */
+#define TIM_CLEARINPUTPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
+#define TIM_CLEARINPUTPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR pin: Capture performed once every 2 events. */
+#define TIM_CLEARINPUTPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR pin: Capture performed once every 4 events. */
+#define TIM_CLEARINPUTPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR pin: Capture performed once every 8 events. */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_OSSR_Off_State_Selection_for_Run_mode_state TIM OSSR OffState Selection for Run mode state
+ * @{
+ */
+#define TIM_OSSR_ENABLE TIM_BDTR_OSSR /*!< When inactive, OC/OCN outputs are enabled (still controlled by the timer) */
+#define TIM_OSSR_DISABLE 0x00000000U /*!< When inactive, OC/OCN outputs are disabled (not controlled any longer by the timer) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_OSSI_Off_State_Selection_for_Idle_mode_state TIM OSSI OffState Selection for Idle mode state
+ * @{
+ */
+#define TIM_OSSI_ENABLE TIM_BDTR_OSSI /*!< When inactive, OC/OCN outputs are enabled (still controlled by the timer) */
+#define TIM_OSSI_DISABLE 0x00000000U /*!< When inactive, OC/OCN outputs are disabled (not controlled any longer by the timer) */
+/**
+ * @}
+ */
+/** @defgroup TIM_Lock_level TIM Lock level
+ * @{
+ */
+#define TIM_LOCKLEVEL_OFF 0x00000000U /*!< LOCK OFF */
+#define TIM_LOCKLEVEL_1 TIM_BDTR_LOCK_0 /*!< LOCK Level 1 */
+#define TIM_LOCKLEVEL_2 TIM_BDTR_LOCK_1 /*!< LOCK Level 2 */
+#define TIM_LOCKLEVEL_3 TIM_BDTR_LOCK /*!< LOCK Level 3 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Break_Input_enable_disable TIM Break Input Enable
+ * @{
+ */
+#define TIM_BREAK_ENABLE TIM_BDTR_BKE /*!< Break input BRK is enabled */
+#define TIM_BREAK_DISABLE 0x00000000U /*!< Break input BRK is disabled */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Break_Polarity TIM Break Input Polarity
+ * @{
+ */
+#define TIM_BREAKPOLARITY_LOW 0x00000000U /*!< Break input BRK is active low */
+#define TIM_BREAKPOLARITY_HIGH TIM_BDTR_BKP /*!< Break input BRK is active high */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_AOE_Bit_Set_Reset TIM Automatic Output Enable
+ * @{
+ */
+#define TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U /*!< MOE can be set only by software */
+#define TIM_AUTOMATICOUTPUT_ENABLE \
+ TIM_BDTR_AOE /*!< MOE can be set by software or automatically at the next update event \
+ (if none of the break inputs BRK and BRK2 is active) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Master_Mode_Selection TIM Master Mode Selection
+ * @{
+ */
+#define TIM_TRGO_RESET 0x00000000U /*!< TIMx_EGR.UG bit is used as trigger output (TRGO) */
+#define TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< TIMx_CR1.CEN bit is used as trigger output (TRGO) */
+#define TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output (TRGO) */
+#define TIM_TRGO_OC1 (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< Capture or a compare match 1 is used as trigger output (TRGO) */
+#define TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output (TRGO) */
+#define TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output(TRGO) */
+#define TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output(TRGO) */
+#define TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output(TRGO) */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Master_Slave_Mode TIM Master/Slave Mode
+ * @{
+ */
+#define TIM_MASTERSLAVEMODE_ENABLE TIM_SMCR_MSM /*!< No action */
+#define TIM_MASTERSLAVEMODE_DISABLE 0x00000000U /*!< Master/slave mode is selected */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Slave_Mode TIM Slave mode
+ * @{
+ */
+#define TIM_SLAVEMODE_DISABLE 0x00000000U /*!< Slave mode disabled */
+#define TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode */
+#define TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode */
+#define TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode */
+#define TIM_SLAVEMODE_EXTERNAL1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< External Clock Mode 1 */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Output_Compare_and_PWM_modes TIM Output Compare and PWM Modes
+ * @{
+ */
+#define TIM_OCMODE_TIMING 0x00000000U /*!< Frozen */
+#define TIM_OCMODE_ACTIVE TIM_CCMR1_OC1M_0 /*!< Set channel to active level on match */
+#define TIM_OCMODE_INACTIVE TIM_CCMR1_OC1M_1 /*!< Set channel to inactive level on match */
+#define TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!< Toggle */
+#define TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1) /*!< PWM mode 1 */
+#define TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!< PWM mode 2 */
+#define TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0) /*!< Force active level */
+#define TIM_OCMODE_FORCED_INACTIVE TIM_CCMR1_OC1M_2 /*!< Force inactive level */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Trigger_Selection TIM Trigger Selection
+ * @{
+ */
+#define TIM_TS_ITR0 0x00000000U /*!< Internal Trigger 0 (ITR0) */
+#define TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) */
+#define TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) */
+#define TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) */
+#define TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) */
+#define TIM_TS_TI1FP1 (TIM_SMCR_TS_0 | TIM_SMCR_TS_2) /*!< Filtered Timer Input 1 (TI1FP1) */
+#define TIM_TS_TI2FP2 (TIM_SMCR_TS_1 | TIM_SMCR_TS_2) /*!< Filtered Timer Input 2 (TI2FP2) */
+#define TIM_TS_ETRF (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_2) /*!< Filtered External Trigger input (ETRF) */
+#define TIM_TS_NONE 0x0000FFFFU /*!< No trigger selected */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Trigger_Polarity TIM Trigger Polarity
+ * @{
+ */
+#define TIM_TRIGGERPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx trigger sources */
+#define TIM_TRIGGERPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx trigger sources */
+#define TIM_TRIGGERPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIxFPx or TI1_ED trigger sources */
+#define TIM_TRIGGERPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIxFPx or TI1_ED trigger sources */
+#define TIM_TRIGGERPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIxFPx or TI1_ED trigger sources */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Trigger_Prescaler TIM Trigger Prescaler
+ * @{
+ */
+#define TIM_TRIGGERPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */
+#define TIM_TRIGGERPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Trigger: Capture performed once every 2 events. */
+#define TIM_TRIGGERPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Trigger: Capture performed once every 4 events. */
+#define TIM_TRIGGERPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Trigger: Capture performed once every 8 events. */
+/**
+ * @}
+ */
+
+/** @defgroup TIM_TI1_Selection TIM TI1 Input Selection
+ * @{
+ */
+#define TIM_TI1SELECTION_CH1 0x00000000U /*!< The TIMx_CH1 pin is connected to TI1 input */
+#define TIM_TI1SELECTION_XORCOMBINATION TIM_CR2_TI1S /*!< The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) */
/**
* @}
*/
@@ -806,49 +969,49 @@ typedef struct {
/** @defgroup TIM_DMA_Burst_Length TIM DMA Burst Length
* @{
*/
-#define TIM_DMABURSTLENGTH_1TRANSFER 0x00000000U
-#define TIM_DMABURSTLENGTH_2TRANSFERS 0x00000100U
-#define TIM_DMABURSTLENGTH_3TRANSFERS 0x00000200U
-#define TIM_DMABURSTLENGTH_4TRANSFERS 0x00000300U
-#define TIM_DMABURSTLENGTH_5TRANSFERS 0x00000400U
-#define TIM_DMABURSTLENGTH_6TRANSFERS 0x00000500U
-#define TIM_DMABURSTLENGTH_7TRANSFERS 0x00000600U
-#define TIM_DMABURSTLENGTH_8TRANSFERS 0x00000700U
-#define TIM_DMABURSTLENGTH_9TRANSFERS 0x00000800U
-#define TIM_DMABURSTLENGTH_10TRANSFERS 0x00000900U
-#define TIM_DMABURSTLENGTH_11TRANSFERS 0x00000A00U
-#define TIM_DMABURSTLENGTH_12TRANSFERS 0x00000B00U
-#define TIM_DMABURSTLENGTH_13TRANSFERS 0x00000C00U
-#define TIM_DMABURSTLENGTH_14TRANSFERS 0x00000D00U
-#define TIM_DMABURSTLENGTH_15TRANSFERS 0x00000E00U
-#define TIM_DMABURSTLENGTH_16TRANSFERS 0x00000F00U
-#define TIM_DMABURSTLENGTH_17TRANSFERS 0x00001000U
-#define TIM_DMABURSTLENGTH_18TRANSFERS 0x00001100U
+#define TIM_DMABURSTLENGTH_1TRANSFER 0x00000000U /*!< The transfer is done to 1 register starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_2TRANSFERS 0x00000100U /*!< The transfer is done to 2 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_3TRANSFERS 0x00000200U /*!< The transfer is done to 3 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_4TRANSFERS 0x00000300U /*!< The transfer is done to 4 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_5TRANSFERS 0x00000400U /*!< The transfer is done to 5 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_6TRANSFERS 0x00000500U /*!< The transfer is done to 6 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_7TRANSFERS 0x00000600U /*!< The transfer is done to 7 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_8TRANSFERS 0x00000700U /*!< The transfer is done to 8 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_9TRANSFERS 0x00000800U /*!< The transfer is done to 9 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_10TRANSFERS 0x00000900U /*!< The transfer is done to 10 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_11TRANSFERS 0x00000A00U /*!< The transfer is done to 11 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_12TRANSFERS 0x00000B00U /*!< The transfer is done to 12 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_13TRANSFERS 0x00000C00U /*!< The transfer is done to 13 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_14TRANSFERS 0x00000D00U /*!< The transfer is done to 14 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_15TRANSFERS 0x00000E00U /*!< The transfer is done to 15 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_16TRANSFERS 0x00000F00U /*!< The transfer is done to 16 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_17TRANSFERS 0x00001000U /*!< The transfer is done to 17 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
+#define TIM_DMABURSTLENGTH_18TRANSFERS 0x00001100U /*!< The transfer is done to 18 registers starting trom TIMx_CR1 + TIMx_DCR.DBA */
/**
* @}
*/
-/** @defgroup TIM_DMA_Handle_index TIM DMA Handle Index
+/** @defgroup DMA_Handle_index TIM DMA Handle Index
* @{
*/
-#define TIM_DMA_ID_UPDATE ((uint16_t)0x0) /*!< Index of the DMA handle used for Update DMA requests */
-#define TIM_DMA_ID_CC1 ((uint16_t)0x1) /*!< Index of the DMA handle used for Capture/Compare 1 DMA requests */
-#define TIM_DMA_ID_CC2 ((uint16_t)0x2) /*!< Index of the DMA handle used for Capture/Compare 2 DMA requests */
-#define TIM_DMA_ID_CC3 ((uint16_t)0x3) /*!< Index of the DMA handle used for Capture/Compare 3 DMA requests */
-#define TIM_DMA_ID_CC4 ((uint16_t)0x4) /*!< Index of the DMA handle used for Capture/Compare 4 DMA requests */
-#define TIM_DMA_ID_COMMUTATION ((uint16_t)0x5) /*!< Index of the DMA handle used for Commutation DMA requests */
-#define TIM_DMA_ID_TRIGGER ((uint16_t)0x6) /*!< Index of the DMA handle used for Trigger DMA requests */
+#define TIM_DMA_ID_UPDATE ((uint16_t)0x0000) /*!< Index of the DMA handle used for Update DMA requests */
+#define TIM_DMA_ID_CC1 ((uint16_t)0x0001) /*!< Index of the DMA handle used for Capture/Compare 1 DMA requests */
+#define TIM_DMA_ID_CC2 ((uint16_t)0x0002) /*!< Index of the DMA handle used for Capture/Compare 2 DMA requests */
+#define TIM_DMA_ID_CC3 ((uint16_t)0x0003) /*!< Index of the DMA handle used for Capture/Compare 3 DMA requests */
+#define TIM_DMA_ID_CC4 ((uint16_t)0x0004) /*!< Index of the DMA handle used for Capture/Compare 4 DMA requests */
+#define TIM_DMA_ID_COMMUTATION ((uint16_t)0x0005) /*!< Index of the DMA handle used for Commutation DMA requests */
+#define TIM_DMA_ID_TRIGGER ((uint16_t)0x0006) /*!< Index of the DMA handle used for Trigger DMA requests */
/**
* @}
*/
-/** @defgroup TIM_Channel_CC_State TIM Capture/Compare Channel State
+/** @defgroup Channel_CC_State TIM Capture/Compare Channel State
* @{
*/
-#define TIM_CCx_ENABLE 0x00000001U
-#define TIM_CCx_DISABLE 0x00000000U
-#define TIM_CCxN_ENABLE 0x00000004U
-#define TIM_CCxN_DISABLE 0x00000000U
+#define TIM_CCx_ENABLE 0x00000001U /*!< Input or output channel is enabled */
+#define TIM_CCx_DISABLE 0x00000000U /*!< Input or output channel is disabled */
+#define TIM_CCxN_ENABLE 0x00000004U /*!< Complementary output channel is enabled */
+#define TIM_CCxN_DISABLE 0x00000000U /*!< Complementary output channel is enabled */
/**
* @}
*/
@@ -856,344 +1019,177 @@ typedef struct {
/**
* @}
*/
-
-/* Private Constants -----------------------------------------------------------*/
-/** @defgroup TIM_Private_Constants TIM Private Constants
- * @{
- */
-
-/* The counter of a timer instance is disabled only if all the CCx and CCxN
- channels have been disabled */
-#define TIM_CCER_CCxE_MASK ((uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E))
-#define TIM_CCER_CCxNE_MASK ((uint32_t)(TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE))
-
-/**
- * @}
- */
-
-/* Private Macros -----------------------------------------------------------*/
-/** @defgroup TIM_Private_Macros TIM Private Macros
- * @{
- */
-
-#define IS_TIM_COUNTER_MODE(MODE) \
- (((MODE) == TIM_COUNTERMODE_UP) || ((MODE) == TIM_COUNTERMODE_DOWN) || ((MODE) == TIM_COUNTERMODE_CENTERALIGNED1) || ((MODE) == TIM_COUNTERMODE_CENTERALIGNED2) \
- || ((MODE) == TIM_COUNTERMODE_CENTERALIGNED3))
-
-#define IS_TIM_CLOCKDIVISION_DIV(DIV) (((DIV) == TIM_CLOCKDIVISION_DIV1) || ((DIV) == TIM_CLOCKDIVISION_DIV2) || ((DIV) == TIM_CLOCKDIVISION_DIV4))
-
-#define IS_TIM_AUTORELOAD_PRELOAD(PRELOAD) (((PRELOAD) == TIM_AUTORELOAD_PRELOAD_DISABLE) || ((PRELOAD) == TIM_AUTORELOAD_PRELOAD_ENABLE))
-
-#define IS_TIM_PWM_MODE(MODE) (((MODE) == TIM_OCMODE_PWM1) || ((MODE) == TIM_OCMODE_PWM2))
-
-#define IS_TIM_OC_MODE(MODE) \
- (((MODE) == TIM_OCMODE_TIMING) || ((MODE) == TIM_OCMODE_ACTIVE) || ((MODE) == TIM_OCMODE_INACTIVE) || ((MODE) == TIM_OCMODE_TOGGLE) || ((MODE) == TIM_OCMODE_FORCED_ACTIVE) \
- || ((MODE) == TIM_OCMODE_FORCED_INACTIVE))
-
-#define IS_TIM_FAST_STATE(STATE) (((STATE) == TIM_OCFAST_DISABLE) || ((STATE) == TIM_OCFAST_ENABLE))
-
-#define IS_TIM_OC_POLARITY(POLARITY) (((POLARITY) == TIM_OCPOLARITY_HIGH) || ((POLARITY) == TIM_OCPOLARITY_LOW))
-
-#define IS_TIM_OCN_POLARITY(POLARITY) (((POLARITY) == TIM_OCNPOLARITY_HIGH) || ((POLARITY) == TIM_OCNPOLARITY_LOW))
-
-#define IS_TIM_OCIDLE_STATE(STATE) (((STATE) == TIM_OCIDLESTATE_SET) || ((STATE) == TIM_OCIDLESTATE_RESET))
-
-#define IS_TIM_OCNIDLE_STATE(STATE) (((STATE) == TIM_OCNIDLESTATE_SET) || ((STATE) == TIM_OCNIDLESTATE_RESET))
-
-#define IS_TIM_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3) || ((CHANNEL) == TIM_CHANNEL_4) || ((CHANNEL) == TIM_CHANNEL_ALL))
-
-#define IS_TIM_OPM_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2))
-
-#define IS_TIM_COMPLEMENTARY_CHANNELS(CHANNEL) (((CHANNEL) == TIM_CHANNEL_1) || ((CHANNEL) == TIM_CHANNEL_2) || ((CHANNEL) == TIM_CHANNEL_3))
-
-#define IS_TIM_IC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ICPOLARITY_RISING) || ((__POLARITY__) == TIM_ICPOLARITY_FALLING) || ((__POLARITY__) == TIM_ICPOLARITY_BOTHEDGE))
-
-#define IS_TIM_IC_SELECTION(SELECTION) (((SELECTION) == TIM_ICSELECTION_DIRECTTI) || ((SELECTION) == TIM_ICSELECTION_INDIRECTTI) || ((SELECTION) == TIM_ICSELECTION_TRC))
-
-#define IS_TIM_IC_PRESCALER(PRESCALER) (((PRESCALER) == TIM_ICPSC_DIV1) || ((PRESCALER) == TIM_ICPSC_DIV2) || ((PRESCALER) == TIM_ICPSC_DIV4) || ((PRESCALER) == TIM_ICPSC_DIV8))
-
-#define IS_TIM_OPM_MODE(MODE) (((MODE) == TIM_OPMODE_SINGLE) || ((MODE) == TIM_OPMODE_REPETITIVE))
-
-#define IS_TIM_ENCODER_MODE(MODE) (((MODE) == TIM_ENCODERMODE_TI1) || ((MODE) == TIM_ENCODERMODE_TI2) || ((MODE) == TIM_ENCODERMODE_TI12))
-
-#define IS_TIM_DMA_SOURCE(SOURCE) ((((SOURCE)&0xFFFF80FFU) == 0x00000000U) && ((SOURCE) != 0x00000000U))
-
-#define IS_TIM_EVENT_SOURCE(SOURCE) ((((SOURCE)&0xFFFFFF00U) == 0x00000000U) && ((SOURCE) != 0x00000000U))
-
-#define IS_TIM_CLOCKSOURCE(CLOCK) \
- (((CLOCK) == TIM_CLOCKSOURCE_INTERNAL) || ((CLOCK) == TIM_CLOCKSOURCE_ETRMODE2) || ((CLOCK) == TIM_CLOCKSOURCE_ITR0) || ((CLOCK) == TIM_CLOCKSOURCE_ITR1) || ((CLOCK) == TIM_CLOCKSOURCE_ITR2) \
- || ((CLOCK) == TIM_CLOCKSOURCE_ITR3) || ((CLOCK) == TIM_CLOCKSOURCE_TI1ED) || ((CLOCK) == TIM_CLOCKSOURCE_TI1) || ((CLOCK) == TIM_CLOCKSOURCE_TI2) || ((CLOCK) == TIM_CLOCKSOURCE_ETRMODE1))
-
-#define IS_TIM_CLOCKPOLARITY(POLARITY) \
- (((POLARITY) == TIM_CLOCKPOLARITY_INVERTED) || ((POLARITY) == TIM_CLOCKPOLARITY_NONINVERTED) || ((POLARITY) == TIM_CLOCKPOLARITY_RISING) || ((POLARITY) == TIM_CLOCKPOLARITY_FALLING) \
- || ((POLARITY) == TIM_CLOCKPOLARITY_BOTHEDGE))
-
-#define IS_TIM_CLOCKPRESCALER(PRESCALER) \
- (((PRESCALER) == TIM_CLOCKPRESCALER_DIV1) || ((PRESCALER) == TIM_CLOCKPRESCALER_DIV2) || ((PRESCALER) == TIM_CLOCKPRESCALER_DIV4) || ((PRESCALER) == TIM_CLOCKPRESCALER_DIV8))
-
-#define IS_TIM_CLOCKFILTER(ICFILTER) ((ICFILTER) <= 0x0FU)
-
-#define IS_TIM_CLEARINPUT_SOURCE(SOURCE) (((SOURCE) == TIM_CLEARINPUTSOURCE_ETR) || ((SOURCE) == TIM_CLEARINPUTSOURCE_NONE))
-
-#define IS_TIM_CLEARINPUT_POLARITY(POLARITY) (((POLARITY) == TIM_CLEARINPUTPOLARITY_INVERTED) || ((POLARITY) == TIM_CLEARINPUTPOLARITY_NONINVERTED))
-
-#define IS_TIM_CLEARINPUT_PRESCALER(PRESCALER) \
- (((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV1) || ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV2) || ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV4) || ((PRESCALER) == TIM_CLEARINPUTPRESCALER_DIV8))
-
-#define IS_TIM_CLEARINPUT_FILTER(ICFILTER) ((ICFILTER) <= 0x0FU)
-
-#define IS_TIM_OSSR_STATE(STATE) (((STATE) == TIM_OSSR_ENABLE) || ((STATE) == TIM_OSSR_DISABLE))
-
-#define IS_TIM_OSSI_STATE(STATE) (((STATE) == TIM_OSSI_ENABLE) || ((STATE) == TIM_OSSI_DISABLE))
-
-#define IS_TIM_LOCK_LEVEL(LEVEL) (((LEVEL) == TIM_LOCKLEVEL_OFF) || ((LEVEL) == TIM_LOCKLEVEL_1) || ((LEVEL) == TIM_LOCKLEVEL_2) || ((LEVEL) == TIM_LOCKLEVEL_3))
-
-#define IS_TIM_BREAK_STATE(STATE) (((STATE) == TIM_BREAK_ENABLE) || ((STATE) == TIM_BREAK_DISABLE))
-
-#define IS_TIM_BREAK_POLARITY(POLARITY) (((POLARITY) == TIM_BREAKPOLARITY_LOW) || ((POLARITY) == TIM_BREAKPOLARITY_HIGH))
-
-#define IS_TIM_AUTOMATIC_OUTPUT_STATE(STATE) (((STATE) == TIM_AUTOMATICOUTPUT_ENABLE) || ((STATE) == TIM_AUTOMATICOUTPUT_DISABLE))
-
-#define IS_TIM_TRGO_SOURCE(SOURCE) \
- (((SOURCE) == TIM_TRGO_RESET) || ((SOURCE) == TIM_TRGO_ENABLE) || ((SOURCE) == TIM_TRGO_UPDATE) || ((SOURCE) == TIM_TRGO_OC1) || ((SOURCE) == TIM_TRGO_OC1REF) || ((SOURCE) == TIM_TRGO_OC2REF) \
- || ((SOURCE) == TIM_TRGO_OC3REF) || ((SOURCE) == TIM_TRGO_OC4REF))
-
-#define IS_TIM_SLAVE_MODE(MODE) \
- (((MODE) == TIM_SLAVEMODE_DISABLE) || ((MODE) == TIM_SLAVEMODE_GATED) || ((MODE) == TIM_SLAVEMODE_RESET) || ((MODE) == TIM_SLAVEMODE_TRIGGER) || ((MODE) == TIM_SLAVEMODE_EXTERNAL1))
-
-#define IS_TIM_MSM_STATE(STATE) (((STATE) == TIM_MASTERSLAVEMODE_ENABLE) || ((STATE) == TIM_MASTERSLAVEMODE_DISABLE))
-
-#define IS_TIM_TRIGGER_SELECTION(SELECTION) \
- (((SELECTION) == TIM_TS_ITR0) || ((SELECTION) == TIM_TS_ITR1) || ((SELECTION) == TIM_TS_ITR2) || ((SELECTION) == TIM_TS_ITR3) || ((SELECTION) == TIM_TS_TI1F_ED) || ((SELECTION) == TIM_TS_TI1FP1) \
- || ((SELECTION) == TIM_TS_TI2FP2) || ((SELECTION) == TIM_TS_ETRF))
-
-#define IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(SELECTION) \
- (((SELECTION) == TIM_TS_ITR0) || ((SELECTION) == TIM_TS_ITR1) || ((SELECTION) == TIM_TS_ITR2) || ((SELECTION) == TIM_TS_ITR3) || ((SELECTION) == TIM_TS_NONE))
-
-#define IS_TIM_TRIGGERPOLARITY(POLARITY) \
- (((POLARITY) == TIM_TRIGGERPOLARITY_INVERTED) || ((POLARITY) == TIM_TRIGGERPOLARITY_NONINVERTED) || ((POLARITY) == TIM_TRIGGERPOLARITY_RISING) || ((POLARITY) == TIM_TRIGGERPOLARITY_FALLING) \
- || ((POLARITY) == TIM_TRIGGERPOLARITY_BOTHEDGE))
-
-#define IS_TIM_TRIGGERPRESCALER(PRESCALER) \
- (((PRESCALER) == TIM_TRIGGERPRESCALER_DIV1) || ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV2) || ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV4) || ((PRESCALER) == TIM_TRIGGERPRESCALER_DIV8))
-
-#define IS_TIM_TRIGGERFILTER(ICFILTER) ((ICFILTER) <= 0x0FU)
-
-#define IS_TIM_TI1SELECTION(TI1SELECTION) (((TI1SELECTION) == TIM_TI1SELECTION_CH1) || ((TI1SELECTION) == TIM_TI1SELECTION_XORCOMBINATION))
-
-#define IS_TIM_DMA_BASE(BASE) \
- (((BASE) == TIM_DMABASE_CR1) || ((BASE) == TIM_DMABASE_CR2) || ((BASE) == TIM_DMABASE_SMCR) || ((BASE) == TIM_DMABASE_DIER) || ((BASE) == TIM_DMABASE_SR) || ((BASE) == TIM_DMABASE_EGR) \
- || ((BASE) == TIM_DMABASE_CCMR1) || ((BASE) == TIM_DMABASE_CCMR2) || ((BASE) == TIM_DMABASE_CCER) || ((BASE) == TIM_DMABASE_CNT) || ((BASE) == TIM_DMABASE_PSC) || ((BASE) == TIM_DMABASE_ARR) \
- || ((BASE) == TIM_DMABASE_RCR) || ((BASE) == TIM_DMABASE_CCR1) || ((BASE) == TIM_DMABASE_CCR2) || ((BASE) == TIM_DMABASE_CCR3) || ((BASE) == TIM_DMABASE_CCR4) || ((BASE) == TIM_DMABASE_BDTR) \
- || ((BASE) == TIM_DMABASE_DCR))
-
-#define IS_TIM_DMA_LENGTH(LENGTH) \
- (((LENGTH) == TIM_DMABURSTLENGTH_1TRANSFER) || ((LENGTH) == TIM_DMABURSTLENGTH_2TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_3TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_4TRANSFERS) \
- || ((LENGTH) == TIM_DMABURSTLENGTH_5TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_6TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_7TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_8TRANSFERS) \
- || ((LENGTH) == TIM_DMABURSTLENGTH_9TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_10TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_11TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_12TRANSFERS) \
- || ((LENGTH) == TIM_DMABURSTLENGTH_13TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_14TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_15TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_16TRANSFERS) \
- || ((LENGTH) == TIM_DMABURSTLENGTH_17TRANSFERS) || ((LENGTH) == TIM_DMABURSTLENGTH_18TRANSFERS))
-
-#define IS_TIM_IC_FILTER(ICFILTER) ((ICFILTER) <= 0x0FU)
-
-/** @brief Set TIM IC prescaler
- * @param __HANDLE__: TIM handle
- * @param __CHANNEL__: specifies TIM Channel
- * @param __ICPSC__: specifies the prescaler value.
- * @retval None
- */
-#define TIM_SET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__, __ICPSC__) \
- (((__CHANNEL__) == TIM_CHANNEL_1) \
- ? ((__HANDLE__)->Instance->CCMR1 |= (__ICPSC__)) \
- : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= ((__ICPSC__) << 8U)) \
- : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= (__ICPSC__)) : ((__HANDLE__)->Instance->CCMR2 |= ((__ICPSC__) << 8U)))
-
-/** @brief Reset TIM IC prescaler
- * @param __HANDLE__: TIM handle
- * @param __CHANNEL__: specifies TIM Channel
- * @retval None
- */
-#define TIM_RESET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__) \
- (((__CHANNEL__) == TIM_CHANNEL_1) \
- ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC) \
- : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC) \
- : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC))
-
-/** @brief Set TIM IC polarity
- * @param __HANDLE__: TIM handle
- * @param __CHANNEL__: specifies TIM Channel
- * @param __POLARITY__: specifies TIM Channel Polarity
- * @retval None
- */
-#define TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \
- (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCER |= (__POLARITY__)) \
- : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 4U)) \
- : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 8U)) \
- : ((__HANDLE__)->Instance->CCER |= (((__POLARITY__) << 12U) & TIM_CCER_CC4P)))
-
-/** @brief Reset TIM IC polarity
- * @param __HANDLE__: TIM handle
- * @param __CHANNEL__: specifies TIM Channel
- * @retval None
- */
-#define TIM_RESET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__) \
- (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCER &= (uint16_t) ~(TIM_CCER_CC1P | TIM_CCER_CC1NP)) \
- : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER &= (uint16_t) ~(TIM_CCER_CC2P | TIM_CCER_CC2NP)) \
- : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER &= (uint16_t) ~(TIM_CCER_CC3P | TIM_CCER_CC3NP)) \
- : ((__HANDLE__)->Instance->CCER &= (uint16_t)~TIM_CCER_CC4P))
-
-/**
- * @}
- */
-
-/* Private Functions --------------------------------------------------------*/
-/** @addtogroup TIM_Private_Functions
- * @{
- */
-void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure);
-void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
-void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
-void TIM_DMAError(DMA_HandleTypeDef *hdma);
-void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma);
-void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState);
-/**
- * @}
- */
+/* End of exported constants -------------------------------------------------*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup TIM_Exported_Macros TIM Exported Macros
* @{
*/
-/** @brief Reset TIM handle state
- * @param __HANDLE__: TIM handle.
+/** @brief Reset TIM handle state.
+ * @param __HANDLE__ TIM handle.
* @retval None
*/
-#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_TIM_STATE_RESET)
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) \
+ do { \
+ (__HANDLE__)->State = HAL_TIM_STATE_RESET; \
+ (__HANDLE__)->ChannelState[0] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[1] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[2] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[3] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[0] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[1] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[2] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[3] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->DMABurstState = HAL_DMA_BURST_STATE_RESET; \
+ (__HANDLE__)->Base_MspInitCallback = NULL; \
+ (__HANDLE__)->Base_MspDeInitCallback = NULL; \
+ (__HANDLE__)->IC_MspInitCallback = NULL; \
+ (__HANDLE__)->IC_MspDeInitCallback = NULL; \
+ (__HANDLE__)->OC_MspInitCallback = NULL; \
+ (__HANDLE__)->OC_MspDeInitCallback = NULL; \
+ (__HANDLE__)->PWM_MspInitCallback = NULL; \
+ (__HANDLE__)->PWM_MspDeInitCallback = NULL; \
+ (__HANDLE__)->OnePulse_MspInitCallback = NULL; \
+ (__HANDLE__)->OnePulse_MspDeInitCallback = NULL; \
+ (__HANDLE__)->Encoder_MspInitCallback = NULL; \
+ (__HANDLE__)->Encoder_MspDeInitCallback = NULL; \
+ (__HANDLE__)->HallSensor_MspInitCallback = NULL; \
+ (__HANDLE__)->HallSensor_MspDeInitCallback = NULL; \
+ } while (0)
+#else
+#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) \
+ do { \
+ (__HANDLE__)->State = HAL_TIM_STATE_RESET; \
+ (__HANDLE__)->ChannelState[0] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[1] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[2] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelState[3] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[0] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[1] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[2] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->ChannelNState[3] = HAL_TIM_CHANNEL_STATE_RESET; \
+ (__HANDLE__)->DMABurstState = HAL_DMA_BURST_STATE_RESET; \
+ } while (0)
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
/**
* @brief Enable the TIM peripheral.
- * @param __HANDLE__: TIM handle
+ * @param __HANDLE__ TIM handle
* @retval None
*/
#define __HAL_TIM_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= (TIM_CR1_CEN))
/**
* @brief Enable the TIM main Output.
- * @param __HANDLE__: TIM handle
+ * @param __HANDLE__ TIM handle
* @retval None
*/
#define __HAL_TIM_MOE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->BDTR |= (TIM_BDTR_MOE))
/**
* @brief Disable the TIM peripheral.
- * @param __HANDLE__: TIM handle
+ * @param __HANDLE__ TIM handle
* @retval None
*/
-#define __HAL_TIM_DISABLE(__HANDLE__) \
- do { \
- if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0U) { \
- if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0U) { \
- (__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_CEN); \
- } \
- } \
- } while (0U)
-/* The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN
- channels have been disabled */
-/**
- * @brief Disable the TIM main Output.
- * @param __HANDLE__: TIM handle
- * @retval None
- * @note The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN channels have been disabled
- */
-#define __HAL_TIM_MOE_DISABLE(__HANDLE__) \
- do { \
- if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0U) { \
- if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0U) { \
- (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE); \
- } \
- } \
- } while (0U)
+#define __HAL_TIM_DISABLE(__HANDLE__) \
+ do { \
+ if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0UL) { \
+ if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0UL) { \
+ (__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_CEN); \
+ } \
+ } \
+ } while (0)
/**
* @brief Disable the TIM main Output.
- * @param __HANDLE__: TIM handle
+ * @param __HANDLE__ TIM handle
+ * @retval None
+ * @note The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN channels have been disabled
+ */
+#define __HAL_TIM_MOE_DISABLE(__HANDLE__) \
+ do { \
+ if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0UL) { \
+ if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0UL) { \
+ (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE); \
+ } \
+ } \
+ } while (0)
+
+/**
+ * @brief Disable the TIM main Output.
+ * @param __HANDLE__ TIM handle
* @retval None
* @note The Main Output Enable of a timer instance is disabled unconditionally
*/
#define __HAL_TIM_MOE_DISABLE_UNCONDITIONALLY(__HANDLE__) (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE)
-/**
- * @brief Enables the specified TIM interrupt.
- * @param __HANDLE__: specifies the TIM Handle.
- * @param __INTERRUPT__: specifies the TIM interrupt source to enable.
+/** @brief Enable the specified TIM interrupt.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __INTERRUPT__ specifies the TIM interrupt source to enable.
* This parameter can be one of the following values:
* @arg TIM_IT_UPDATE: Update interrupt
- * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
+ * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
* @arg TIM_IT_CC2: Capture/Compare 2 interrupt
* @arg TIM_IT_CC3: Capture/Compare 3 interrupt
* @arg TIM_IT_CC4: Capture/Compare 4 interrupt
- * @arg TIM_IT_COM: Commutation interrupt
+ * @arg TIM_IT_COM: Commutation interrupt
* @arg TIM_IT_TRIGGER: Trigger interrupt
* @arg TIM_IT_BREAK: Break interrupt
* @retval None
*/
#define __HAL_TIM_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DIER |= (__INTERRUPT__))
-/**
- * @brief Disables the specified TIM interrupt.
- * @param __HANDLE__: specifies the TIM Handle.
- * @param __INTERRUPT__: specifies the TIM interrupt source to disable.
+/** @brief Disable the specified TIM interrupt.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __INTERRUPT__ specifies the TIM interrupt source to disable.
* This parameter can be one of the following values:
* @arg TIM_IT_UPDATE: Update interrupt
- * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
+ * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
* @arg TIM_IT_CC2: Capture/Compare 2 interrupt
* @arg TIM_IT_CC3: Capture/Compare 3 interrupt
* @arg TIM_IT_CC4: Capture/Compare 4 interrupt
- * @arg TIM_IT_COM: Commutation interrupt
+ * @arg TIM_IT_COM: Commutation interrupt
* @arg TIM_IT_TRIGGER: Trigger interrupt
* @arg TIM_IT_BREAK: Break interrupt
* @retval None
*/
#define __HAL_TIM_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DIER &= ~(__INTERRUPT__))
-/**
- * @brief Enables the specified DMA request.
- * @param __HANDLE__: specifies the TIM Handle.
- * @param __DMA__: specifies the TIM DMA request to enable.
+/** @brief Enable the specified DMA request.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __DMA__ specifies the TIM DMA request to enable.
* This parameter can be one of the following values:
* @arg TIM_DMA_UPDATE: Update DMA request
- * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request
+ * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request
* @arg TIM_DMA_CC2: Capture/Compare 2 DMA request
* @arg TIM_DMA_CC3: Capture/Compare 3 DMA request
* @arg TIM_DMA_CC4: Capture/Compare 4 DMA request
- * @arg TIM_DMA_COM: Commutation DMA request
+ * @arg TIM_DMA_COM: Commutation DMA request
* @arg TIM_DMA_TRIGGER: Trigger DMA request
* @retval None
*/
#define __HAL_TIM_ENABLE_DMA(__HANDLE__, __DMA__) ((__HANDLE__)->Instance->DIER |= (__DMA__))
-/**
- * @brief Disables the specified DMA request.
- * @param __HANDLE__: specifies the TIM Handle.
- * @param __DMA__: specifies the TIM DMA request to disable.
+/** @brief Disable the specified DMA request.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __DMA__ specifies the TIM DMA request to disable.
* This parameter can be one of the following values:
* @arg TIM_DMA_UPDATE: Update DMA request
- * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request
+ * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request
* @arg TIM_DMA_CC2: Capture/Compare 2 DMA request
* @arg TIM_DMA_CC3: Capture/Compare 3 DMA request
* @arg TIM_DMA_CC4: Capture/Compare 4 DMA request
- * @arg TIM_DMA_COM: Commutation DMA request
+ * @arg TIM_DMA_COM: Commutation DMA request
* @arg TIM_DMA_TRIGGER: Trigger DMA request
* @retval None
*/
#define __HAL_TIM_DISABLE_DMA(__HANDLE__, __DMA__) ((__HANDLE__)->Instance->DIER &= ~(__DMA__))
-/**
- * @brief Checks whether the specified TIM interrupt flag is set or not.
- * @param __HANDLE__: specifies the TIM Handle.
- * @param __FLAG__: specifies the TIM interrupt flag to check.
+/** @brief Check whether the specified TIM interrupt flag is set or not.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __FLAG__ specifies the TIM interrupt flag to check.
* This parameter can be one of the following values:
* @arg TIM_FLAG_UPDATE: Update interrupt flag
* @arg TIM_FLAG_CC1: Capture/Compare 1 interrupt flag
@@ -1211,10 +1207,9 @@ void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelStat
*/
#define __HAL_TIM_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
-/**
- * @brief Clears the specified TIM interrupt flag.
- * @param __HANDLE__: specifies the TIM Handle.
- * @param __FLAG__: specifies the TIM interrupt flag to clear.
+/** @brief Clear the specified TIM interrupt flag.
+ * @param __HANDLE__ specifies the TIM Handle.
+ * @param __FLAG__ specifies the TIM interrupt flag to clear.
* This parameter can be one of the following values:
* @arg TIM_FLAG_UPDATE: Update interrupt flag
* @arg TIM_FLAG_CC1: Capture/Compare 1 interrupt flag
@@ -1233,122 +1228,109 @@ void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelStat
#define __HAL_TIM_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))
/**
- * @brief Checks whether the specified TIM interrupt has occurred or not.
- * @param __HANDLE__: TIM handle
- * @param __INTERRUPT__: specifies the TIM interrupt source to check.
+ * @brief Check whether the specified TIM interrupt source is enabled or not.
+ * @param __HANDLE__ TIM handle
+ * @param __INTERRUPT__ specifies the TIM interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg TIM_IT_UPDATE: Update interrupt
+ * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
+ * @arg TIM_IT_CC2: Capture/Compare 2 interrupt
+ * @arg TIM_IT_CC3: Capture/Compare 3 interrupt
+ * @arg TIM_IT_CC4: Capture/Compare 4 interrupt
+ * @arg TIM_IT_COM: Commutation interrupt
+ * @arg TIM_IT_TRIGGER: Trigger interrupt
+ * @arg TIM_IT_BREAK: Break interrupt
* @retval The state of TIM_IT (SET or RESET).
*/
#define __HAL_TIM_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->DIER & (__INTERRUPT__)) == (__INTERRUPT__)) ? SET : RESET)
-/**
- * @brief Clear the TIM interrupt pending bits
- * @param __HANDLE__: TIM handle
- * @param __INTERRUPT__: specifies the interrupt pending bit to clear.
+/** @brief Clear the TIM interrupt pending bits.
+ * @param __HANDLE__ TIM handle
+ * @param __INTERRUPT__ specifies the interrupt pending bit to clear.
+ * This parameter can be one of the following values:
+ * @arg TIM_IT_UPDATE: Update interrupt
+ * @arg TIM_IT_CC1: Capture/Compare 1 interrupt
+ * @arg TIM_IT_CC2: Capture/Compare 2 interrupt
+ * @arg TIM_IT_CC3: Capture/Compare 3 interrupt
+ * @arg TIM_IT_CC4: Capture/Compare 4 interrupt
+ * @arg TIM_IT_COM: Commutation interrupt
+ * @arg TIM_IT_TRIGGER: Trigger interrupt
+ * @arg TIM_IT_BREAK: Break interrupt
* @retval None
*/
#define __HAL_TIM_CLEAR_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->SR = ~(__INTERRUPT__))
/**
- * @brief Indicates whether or not the TIM Counter is used as downcounter
- * @param __HANDLE__: TIM handle.
+ * @brief Indicates whether or not the TIM Counter is used as downcounter.
+ * @param __HANDLE__ TIM handle.
* @retval False (Counter used as upcounter) or True (Counter used as downcounter)
- * @note This macro is particularly usefull to get the counting mode when the timer operates in Center-aligned mode or Encoder
+ * @note This macro is particularly useful to get the counting mode when the timer operates in Center-aligned mode or Encoder
mode.
*/
#define __HAL_TIM_IS_TIM_COUNTING_DOWN(__HANDLE__) (((__HANDLE__)->Instance->CR1 & (TIM_CR1_DIR)) == (TIM_CR1_DIR))
/**
- * @brief Sets the TIM active prescaler register value on update event.
- * @param __HANDLE__: TIM handle.
- * @param __PRESC__: specifies the active prescaler register new value.
+ * @brief Set the TIM Prescaler on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __PRESC__ specifies the Prescaler new value.
* @retval None
*/
#define __HAL_TIM_SET_PRESCALER(__HANDLE__, __PRESC__) ((__HANDLE__)->Instance->PSC = (__PRESC__))
/**
- * @brief Sets the TIM Capture Compare Register value on runtime without
- * calling another time ConfigChannel function.
- * @param __HANDLE__: TIM handle.
- * @param __CHANNEL__ : TIM Channels to be configured.
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param __COMPARE__: specifies the Capture Compare register new value.
- * @retval None
- */
-#define __HAL_TIM_SET_COMPARE(__HANDLE__, __CHANNEL__, __COMPARE__) (*(__IO uint32_t *)(&((__HANDLE__)->Instance->CCR1) + ((__CHANNEL__) >> 2U)) = (__COMPARE__))
-
-/**
- * @brief Gets the TIM Capture Compare Register value on runtime
- * @param __HANDLE__: TIM handle.
- * @param __CHANNEL__ : TIM Channel associated with the capture compare register
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: get capture/compare 1 register value
- * @arg TIM_CHANNEL_2: get capture/compare 2 register value
- * @arg TIM_CHANNEL_3: get capture/compare 3 register value
- * @arg TIM_CHANNEL_4: get capture/compare 4 register value
- * @retval 16-bit or 32-bit value of the capture/compare register (TIMx_CCRy)
- */
-#define __HAL_TIM_GET_COMPARE(__HANDLE__, __CHANNEL__) (*(__IO uint32_t *)(&((__HANDLE__)->Instance->CCR1) + ((__CHANNEL__) >> 2U)))
-
-/**
- * @brief Sets the TIM Counter Register value on runtime.
- * @param __HANDLE__: TIM handle.
- * @param __COUNTER__: specifies the Counter register new value.
+ * @brief Set the TIM Counter Register value on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __COUNTER__ specifies the Counter register new value.
* @retval None
*/
#define __HAL_TIM_SET_COUNTER(__HANDLE__, __COUNTER__) ((__HANDLE__)->Instance->CNT = (__COUNTER__))
/**
- * @brief Gets the TIM Counter Register value on runtime.
- * @param __HANDLE__: TIM handle.
+ * @brief Get the TIM Counter Register value on runtime.
+ * @param __HANDLE__ TIM handle.
* @retval 16-bit or 32-bit value of the timer counter register (TIMx_CNT)
*/
#define __HAL_TIM_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNT)
/**
- * @brief Sets the TIM Autoreload Register value on runtime without calling
- * another time any Init function.
- * @param __HANDLE__: TIM handle.
- * @param __AUTORELOAD__: specifies the Counter register new value.
+ * @brief Set the TIM Autoreload Register value on runtime without calling another time any Init function.
+ * @param __HANDLE__ TIM handle.
+ * @param __AUTORELOAD__ specifies the Counter register new value.
* @retval None
*/
#define __HAL_TIM_SET_AUTORELOAD(__HANDLE__, __AUTORELOAD__) \
do { \
(__HANDLE__)->Instance->ARR = (__AUTORELOAD__); \
(__HANDLE__)->Init.Period = (__AUTORELOAD__); \
- } while (0U)
+ } while (0)
/**
- * @brief Gets the TIM Autoreload Register value on runtime
- * @param __HANDLE__: TIM handle.
- * @retval @retval 16-bit or 32-bit value of the timer auto-reload register(TIMx_ARR)
+ * @brief Get the TIM Autoreload Register value on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @retval 16-bit or 32-bit value of the timer auto-reload register(TIMx_ARR)
*/
#define __HAL_TIM_GET_AUTORELOAD(__HANDLE__) ((__HANDLE__)->Instance->ARR)
/**
- * @brief Sets the TIM Clock Division value on runtime without calling
- * another time any Init function.
- * @param __HANDLE__: TIM handle.
- * @param __CKD__: specifies the clock division value.
+ * @brief Set the TIM Clock Division value on runtime without calling another time any Init function.
+ * @param __HANDLE__ TIM handle.
+ * @param __CKD__ specifies the clock division value.
* This parameter can be one of the following value:
* @arg TIM_CLOCKDIVISION_DIV1: tDTS=tCK_INT
* @arg TIM_CLOCKDIVISION_DIV2: tDTS=2*tCK_INT
* @arg TIM_CLOCKDIVISION_DIV4: tDTS=4*tCK_INT
* @retval None
*/
-#define __HAL_TIM_SET_CLOCKDIVISION(__HANDLE__, __CKD__) \
- do { \
- (__HANDLE__)->Instance->CR1 &= (uint16_t)(~TIM_CR1_CKD); \
- (__HANDLE__)->Instance->CR1 |= (__CKD__); \
- (__HANDLE__)->Init.ClockDivision = (__CKD__); \
- } while (0U)
+#define __HAL_TIM_SET_CLOCKDIVISION(__HANDLE__, __CKD__) \
+ do { \
+ (__HANDLE__)->Instance->CR1 &= (~TIM_CR1_CKD); \
+ (__HANDLE__)->Instance->CR1 |= (__CKD__); \
+ (__HANDLE__)->Init.ClockDivision = (__CKD__); \
+ } while (0)
/**
- * @brief Gets the TIM Clock Division value on runtime
- * @param __HANDLE__: TIM handle.
+ * @brief Get the TIM Clock Division value on runtime.
+ * @param __HANDLE__ TIM handle.
* @retval The clock division can be one of the following values:
* @arg TIM_CLOCKDIVISION_DIV1: tDTS=tCK_INT
* @arg TIM_CLOCKDIVISION_DIV2: tDTS=2*tCK_INT
@@ -1357,16 +1339,15 @@ mode.
#define __HAL_TIM_GET_CLOCKDIVISION(__HANDLE__) ((__HANDLE__)->Instance->CR1 & TIM_CR1_CKD)
/**
- * @brief Sets the TIM Input Capture prescaler on runtime without calling
- * another time HAL_TIM_IC_ConfigChannel() function.
- * @param __HANDLE__: TIM handle.
- * @param __CHANNEL__ : TIM Channels to be configured.
+ * @brief Set the TIM Input Capture prescaler on runtime without calling another time HAL_TIM_IC_ConfigChannel() function.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param __ICPSC__: specifies the Input Capture4 prescaler new value.
+ * @param __ICPSC__ specifies the Input Capture4 prescaler new value.
* This parameter can be one of the following values:
* @arg TIM_ICPSC_DIV1: no prescaler
* @arg TIM_ICPSC_DIV2: capture is done once every 2 events
@@ -1378,12 +1359,12 @@ mode.
do { \
TIM_RESET_ICPRESCALERVALUE((__HANDLE__), (__CHANNEL__)); \
TIM_SET_ICPRESCALERVALUE((__HANDLE__), (__CHANNEL__), (__ICPSC__)); \
- } while (0U)
+ } while (0)
/**
- * @brief Gets the TIM Input Capture prescaler on runtime
- * @param __HANDLE__: TIM handle.
- * @param __CHANNEL__: TIM Channels to be configured.
+ * @brief Get the TIM Input Capture prescaler on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: get input capture 1 prescaler value
* @arg TIM_CHANNEL_2: get input capture 2 prescaler value
@@ -1402,63 +1383,393 @@ mode.
: ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC3PSC) : (((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC4PSC)) >> 8U)
/**
- * @brief Set the Update Request Source (URS) bit of the TIMx_CR1 register
- * @param __HANDLE__: TIM handle.
- * @note When the USR bit of the TIMx_CR1 register is set, only counter
- * overflow/underflow generates an update interrupt or DMA request (if
- * enabled)
- * @retval None
- */
-#define __HAL_TIM_URS_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= (TIM_CR1_URS))
-
-/**
- * @brief Reset the Update Request Source (URS) bit of the TIMx_CR1 register
- * @param __HANDLE__: TIM handle.
- * @note When the USR bit of the TIMx_CR1 register is reset, any of the
- * following events generate an update interrupt or DMA request (if
- * enabled):
- * (+) Counter overflow/underflow
- * (+) Setting the UG bit
- * (+) Update generation through the slave mode controller
- * @retval None
- */
-#define __HAL_TIM_URS_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_URS))
-
-/**
- * @brief Sets the TIM Capture x input polarity on runtime.
- * @param __HANDLE__: TIM handle.
- * @param __CHANNEL__: TIM Channels to be configured.
+ * @brief Set the TIM Capture Compare Register value on runtime without calling another time ConfigChannel function.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param __POLARITY__: Polarity for TIx source
+ * @param __COMPARE__ specifies the Capture Compare register new value.
+ * @retval None
+ */
+#define __HAL_TIM_SET_COMPARE(__HANDLE__, __CHANNEL__, __COMPARE__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCR1 = (__COMPARE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2 = (__COMPARE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3 = (__COMPARE__)) : ((__HANDLE__)->Instance->CCR4 = (__COMPARE__)))
+
+/**
+ * @brief Get the TIM Capture Compare Register value on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channel associated with the capture compare register
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: get capture/compare 1 register value
+ * @arg TIM_CHANNEL_2: get capture/compare 2 register value
+ * @arg TIM_CHANNEL_3: get capture/compare 3 register value
+ * @arg TIM_CHANNEL_4: get capture/compare 4 register value
+ * @retval 16-bit or 32-bit value of the capture/compare register (TIMx_CCRy)
+ */
+#define __HAL_TIM_GET_COMPARE(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCR1) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2) : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3) : ((__HANDLE__)->Instance->CCR4))
+
+/**
+ * @brief Set the TIM Output compare preload.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval None
+ */
+#define __HAL_TIM_ENABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1PE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2PE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3PE) : ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4PE))
+
+/**
+ * @brief Reset the TIM Output compare preload.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval None
+ */
+#define __HAL_TIM_DISABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC1PE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC2PE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC3PE) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC4PE))
+
+/**
+ * @brief Enable fast mode for a given channel.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @note When fast mode is enabled an active edge on the trigger input acts
+ * like a compare match on CCx output. Delay to sample the trigger
+ * input and to activate CCx output is reduced to 3 clock cycles.
+ * @note Fast mode acts only if the channel is configured in PWM1 or PWM2 mode.
+ * @retval None
+ */
+#define __HAL_TIM_ENABLE_OCxFAST(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1FE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2FE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3FE) : ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4FE))
+
+/**
+ * @brief Disable fast mode for a given channel.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @note When fast mode is disabled CCx output behaves normally depending
+ * on counter and CCRx values even when the trigger is ON. The minimum
+ * delay to activate CCx output when an active edge occurs on the
+ * trigger input is 5 clock cycles.
+ * @retval None
+ */
+#define __HAL_TIM_DISABLE_OCxFAST(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE))
+
+/**
+ * @brief Set the Update Request Source (URS) bit of the TIMx_CR1 register.
+ * @param __HANDLE__ TIM handle.
+ * @note When the URS bit of the TIMx_CR1 register is set, only counter
+ * overflow/underflow generates an update interrupt or DMA request (if
+ * enabled)
+ * @retval None
+ */
+#define __HAL_TIM_URS_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 |= TIM_CR1_URS)
+
+/**
+ * @brief Reset the Update Request Source (URS) bit of the TIMx_CR1 register.
+ * @param __HANDLE__ TIM handle.
+ * @note When the URS bit of the TIMx_CR1 register is reset, any of the
+ * following events generate an update interrupt or DMA request (if
+ * enabled):
+ * _ Counter overflow underflow
+ * _ Setting the UG bit
+ * _ Update generation through the slave mode controller
+ * @retval None
+ */
+#define __HAL_TIM_URS_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1 &= ~TIM_CR1_URS)
+
+/**
+ * @brief Set the TIM Capture x input polarity on runtime.
+ * @param __HANDLE__ TIM handle.
+ * @param __CHANNEL__ TIM Channels to be configured.
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param __POLARITY__ Polarity for TIx source
* @arg TIM_INPUTCHANNELPOLARITY_RISING: Rising Edge
* @arg TIM_INPUTCHANNELPOLARITY_FALLING: Falling Edge
* @arg TIM_INPUTCHANNELPOLARITY_BOTHEDGE: Rising and Falling Edge
- * @note The polarity TIM_INPUTCHANNELPOLARITY_BOTHEDGE is not authorized for TIM Channel 4.
* @retval None
*/
#define __HAL_TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \
do { \
TIM_RESET_CAPTUREPOLARITY((__HANDLE__), (__CHANNEL__)); \
TIM_SET_CAPTUREPOLARITY((__HANDLE__), (__CHANNEL__), (__POLARITY__)); \
- } while (0U)
+ } while (0)
/**
* @}
*/
+/* End of exported macros ----------------------------------------------------*/
-/* Include TIM HAL Extension module */
+/* Private constants ---------------------------------------------------------*/
+/** @defgroup TIM_Private_Constants TIM Private Constants
+ * @{
+ */
+/* The counter of a timer instance is disabled only if all the CCx and CCxN
+ channels have been disabled */
+#define TIM_CCER_CCxE_MASK ((uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E))
+#define TIM_CCER_CCxNE_MASK ((uint32_t)(TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE))
+/**
+ * @}
+ */
+/* End of private constants --------------------------------------------------*/
+
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup TIM_Private_Macros TIM Private Macros
+ * @{
+ */
+#define IS_TIM_CLEARINPUT_SOURCE(__MODE__) (((__MODE__) == TIM_CLEARINPUTSOURCE_NONE) || ((__MODE__) == TIM_CLEARINPUTSOURCE_ETR))
+
+#define IS_TIM_DMA_BASE(__BASE__) \
+ (((__BASE__) == TIM_DMABASE_CR1) || ((__BASE__) == TIM_DMABASE_CR2) || ((__BASE__) == TIM_DMABASE_SMCR) || ((__BASE__) == TIM_DMABASE_DIER) || ((__BASE__) == TIM_DMABASE_SR) \
+ || ((__BASE__) == TIM_DMABASE_EGR) || ((__BASE__) == TIM_DMABASE_CCMR1) || ((__BASE__) == TIM_DMABASE_CCMR2) || ((__BASE__) == TIM_DMABASE_CCER) || ((__BASE__) == TIM_DMABASE_CNT) \
+ || ((__BASE__) == TIM_DMABASE_PSC) || ((__BASE__) == TIM_DMABASE_ARR) || ((__BASE__) == TIM_DMABASE_RCR) || ((__BASE__) == TIM_DMABASE_CCR1) || ((__BASE__) == TIM_DMABASE_CCR2) \
+ || ((__BASE__) == TIM_DMABASE_CCR3) || ((__BASE__) == TIM_DMABASE_CCR4) || ((__BASE__) == TIM_DMABASE_BDTR))
+
+#define IS_TIM_EVENT_SOURCE(__SOURCE__) ((((__SOURCE__)&0xFFFFFF00U) == 0x00000000U) && ((__SOURCE__) != 0x00000000U))
+
+#define IS_TIM_COUNTER_MODE(__MODE__) \
+ (((__MODE__) == TIM_COUNTERMODE_UP) || ((__MODE__) == TIM_COUNTERMODE_DOWN) || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED1) || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED2) \
+ || ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED3))
+
+#define IS_TIM_CLOCKDIVISION_DIV(__DIV__) (((__DIV__) == TIM_CLOCKDIVISION_DIV1) || ((__DIV__) == TIM_CLOCKDIVISION_DIV2) || ((__DIV__) == TIM_CLOCKDIVISION_DIV4))
+
+#define IS_TIM_AUTORELOAD_PRELOAD(PRELOAD) (((PRELOAD) == TIM_AUTORELOAD_PRELOAD_DISABLE) || ((PRELOAD) == TIM_AUTORELOAD_PRELOAD_ENABLE))
+
+#define IS_TIM_FAST_STATE(__STATE__) (((__STATE__) == TIM_OCFAST_DISABLE) || ((__STATE__) == TIM_OCFAST_ENABLE))
+
+#define IS_TIM_OC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_OCPOLARITY_HIGH) || ((__POLARITY__) == TIM_OCPOLARITY_LOW))
+
+#define IS_TIM_OCN_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_OCNPOLARITY_HIGH) || ((__POLARITY__) == TIM_OCNPOLARITY_LOW))
+
+#define IS_TIM_OCIDLE_STATE(__STATE__) (((__STATE__) == TIM_OCIDLESTATE_SET) || ((__STATE__) == TIM_OCIDLESTATE_RESET))
+
+#define IS_TIM_OCNIDLE_STATE(__STATE__) (((__STATE__) == TIM_OCNIDLESTATE_SET) || ((__STATE__) == TIM_OCNIDLESTATE_RESET))
+
+#define IS_TIM_ENCODERINPUT_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ENCODERINPUTPOLARITY_RISING) || ((__POLARITY__) == TIM_ENCODERINPUTPOLARITY_FALLING))
+
+#define IS_TIM_IC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ICPOLARITY_RISING) || ((__POLARITY__) == TIM_ICPOLARITY_FALLING) || ((__POLARITY__) == TIM_ICPOLARITY_BOTHEDGE))
+
+#define IS_TIM_IC_SELECTION(__SELECTION__) (((__SELECTION__) == TIM_ICSELECTION_DIRECTTI) || ((__SELECTION__) == TIM_ICSELECTION_INDIRECTTI) || ((__SELECTION__) == TIM_ICSELECTION_TRC))
+
+#define IS_TIM_IC_PRESCALER(__PRESCALER__) (((__PRESCALER__) == TIM_ICPSC_DIV1) || ((__PRESCALER__) == TIM_ICPSC_DIV2) || ((__PRESCALER__) == TIM_ICPSC_DIV4) || ((__PRESCALER__) == TIM_ICPSC_DIV8))
+
+#define IS_TIM_OPM_MODE(__MODE__) (((__MODE__) == TIM_OPMODE_SINGLE) || ((__MODE__) == TIM_OPMODE_REPETITIVE))
+
+#define IS_TIM_ENCODER_MODE(__MODE__) (((__MODE__) == TIM_ENCODERMODE_TI1) || ((__MODE__) == TIM_ENCODERMODE_TI2) || ((__MODE__) == TIM_ENCODERMODE_TI12))
+
+#define IS_TIM_DMA_SOURCE(__SOURCE__) ((((__SOURCE__)&0xFFFF80FFU) == 0x00000000U) && ((__SOURCE__) != 0x00000000U))
+
+#define IS_TIM_CHANNELS(__CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2) || ((__CHANNEL__) == TIM_CHANNEL_3) || ((__CHANNEL__) == TIM_CHANNEL_4) || ((__CHANNEL__) == TIM_CHANNEL_ALL))
+
+#define IS_TIM_OPM_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2))
+
+#define IS_TIM_COMPLEMENTARY_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || ((__CHANNEL__) == TIM_CHANNEL_2) || ((__CHANNEL__) == TIM_CHANNEL_3))
+
+#define IS_TIM_CLOCKSOURCE(__CLOCK__) \
+ (((__CLOCK__) == TIM_CLOCKSOURCE_INTERNAL) || ((__CLOCK__) == TIM_CLOCKSOURCE_ETRMODE2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR0) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR1) \
+ || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ITR3) || ((__CLOCK__) == TIM_CLOCKSOURCE_TI1ED) || ((__CLOCK__) == TIM_CLOCKSOURCE_TI1) \
+ || ((__CLOCK__) == TIM_CLOCKSOURCE_TI2) || ((__CLOCK__) == TIM_CLOCKSOURCE_ETRMODE1))
+
+#define IS_TIM_CLOCKPOLARITY(__POLARITY__) \
+ (((__POLARITY__) == TIM_CLOCKPOLARITY_INVERTED) || ((__POLARITY__) == TIM_CLOCKPOLARITY_NONINVERTED) || ((__POLARITY__) == TIM_CLOCKPOLARITY_RISING) \
+ || ((__POLARITY__) == TIM_CLOCKPOLARITY_FALLING) || ((__POLARITY__) == TIM_CLOCKPOLARITY_BOTHEDGE))
+
+#define IS_TIM_CLOCKPRESCALER(__PRESCALER__) \
+ (((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV1) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV2) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV4) || ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV8))
+
+#define IS_TIM_CLOCKFILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU)
+
+#define IS_TIM_CLEARINPUT_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_CLEARINPUTPOLARITY_INVERTED) || ((__POLARITY__) == TIM_CLEARINPUTPOLARITY_NONINVERTED))
+
+#define IS_TIM_CLEARINPUT_PRESCALER(__PRESCALER__) \
+ (((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV1) || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV2) || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV4) \
+ || ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV8))
+
+#define IS_TIM_CLEARINPUT_FILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU)
+
+#define IS_TIM_OSSR_STATE(__STATE__) (((__STATE__) == TIM_OSSR_ENABLE) || ((__STATE__) == TIM_OSSR_DISABLE))
+
+#define IS_TIM_OSSI_STATE(__STATE__) (((__STATE__) == TIM_OSSI_ENABLE) || ((__STATE__) == TIM_OSSI_DISABLE))
+
+#define IS_TIM_LOCK_LEVEL(__LEVEL__) (((__LEVEL__) == TIM_LOCKLEVEL_OFF) || ((__LEVEL__) == TIM_LOCKLEVEL_1) || ((__LEVEL__) == TIM_LOCKLEVEL_2) || ((__LEVEL__) == TIM_LOCKLEVEL_3))
+
+#define IS_TIM_BREAK_FILTER(__BRKFILTER__) ((__BRKFILTER__) <= 0xFUL)
+
+#define IS_TIM_BREAK_STATE(__STATE__) (((__STATE__) == TIM_BREAK_ENABLE) || ((__STATE__) == TIM_BREAK_DISABLE))
+
+#define IS_TIM_BREAK_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_BREAKPOLARITY_LOW) || ((__POLARITY__) == TIM_BREAKPOLARITY_HIGH))
+
+#define IS_TIM_AUTOMATIC_OUTPUT_STATE(__STATE__) (((__STATE__) == TIM_AUTOMATICOUTPUT_ENABLE) || ((__STATE__) == TIM_AUTOMATICOUTPUT_DISABLE))
+
+#define IS_TIM_TRGO_SOURCE(__SOURCE__) \
+ (((__SOURCE__) == TIM_TRGO_RESET) || ((__SOURCE__) == TIM_TRGO_ENABLE) || ((__SOURCE__) == TIM_TRGO_UPDATE) || ((__SOURCE__) == TIM_TRGO_OC1) || ((__SOURCE__) == TIM_TRGO_OC1REF) \
+ || ((__SOURCE__) == TIM_TRGO_OC2REF) || ((__SOURCE__) == TIM_TRGO_OC3REF) || ((__SOURCE__) == TIM_TRGO_OC4REF))
+
+#define IS_TIM_MSM_STATE(__STATE__) (((__STATE__) == TIM_MASTERSLAVEMODE_ENABLE) || ((__STATE__) == TIM_MASTERSLAVEMODE_DISABLE))
+
+#define IS_TIM_SLAVE_MODE(__MODE__) \
+ (((__MODE__) == TIM_SLAVEMODE_DISABLE) || ((__MODE__) == TIM_SLAVEMODE_RESET) || ((__MODE__) == TIM_SLAVEMODE_GATED) || ((__MODE__) == TIM_SLAVEMODE_TRIGGER) \
+ || ((__MODE__) == TIM_SLAVEMODE_EXTERNAL1))
+
+#define IS_TIM_PWM_MODE(__MODE__) (((__MODE__) == TIM_OCMODE_PWM1) || ((__MODE__) == TIM_OCMODE_PWM2))
+
+#define IS_TIM_OC_MODE(__MODE__) \
+ (((__MODE__) == TIM_OCMODE_TIMING) || ((__MODE__) == TIM_OCMODE_ACTIVE) || ((__MODE__) == TIM_OCMODE_INACTIVE) || ((__MODE__) == TIM_OCMODE_TOGGLE) || ((__MODE__) == TIM_OCMODE_FORCED_ACTIVE) \
+ || ((__MODE__) == TIM_OCMODE_FORCED_INACTIVE))
+
+#define IS_TIM_TRIGGER_SELECTION(__SELECTION__) \
+ (((__SELECTION__) == TIM_TS_ITR0) || ((__SELECTION__) == TIM_TS_ITR1) || ((__SELECTION__) == TIM_TS_ITR2) || ((__SELECTION__) == TIM_TS_ITR3) || ((__SELECTION__) == TIM_TS_TI1F_ED) \
+ || ((__SELECTION__) == TIM_TS_TI1FP1) || ((__SELECTION__) == TIM_TS_TI2FP2) || ((__SELECTION__) == TIM_TS_ETRF))
+
+#define IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(__SELECTION__) \
+ (((__SELECTION__) == TIM_TS_ITR0) || ((__SELECTION__) == TIM_TS_ITR1) || ((__SELECTION__) == TIM_TS_ITR2) || ((__SELECTION__) == TIM_TS_ITR3) || ((__SELECTION__) == TIM_TS_NONE))
+
+#define IS_TIM_TRIGGERPOLARITY(__POLARITY__) \
+ (((__POLARITY__) == TIM_TRIGGERPOLARITY_INVERTED) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_NONINVERTED) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_RISING) \
+ || ((__POLARITY__) == TIM_TRIGGERPOLARITY_FALLING) || ((__POLARITY__) == TIM_TRIGGERPOLARITY_BOTHEDGE))
+
+#define IS_TIM_TRIGGERPRESCALER(__PRESCALER__) \
+ (((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV1) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV2) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV4) || ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV8))
+
+#define IS_TIM_TRIGGERFILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU)
+
+#define IS_TIM_TI1SELECTION(__TI1SELECTION__) (((__TI1SELECTION__) == TIM_TI1SELECTION_CH1) || ((__TI1SELECTION__) == TIM_TI1SELECTION_XORCOMBINATION))
+
+#define IS_TIM_DMA_LENGTH(__LENGTH__) \
+ (((__LENGTH__) == TIM_DMABURSTLENGTH_1TRANSFER) || ((__LENGTH__) == TIM_DMABURSTLENGTH_2TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_3TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_4TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_5TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_6TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_7TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_8TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_9TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_10TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_11TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_12TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_13TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_14TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_15TRANSFERS) \
+ || ((__LENGTH__) == TIM_DMABURSTLENGTH_16TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_17TRANSFERS) || ((__LENGTH__) == TIM_DMABURSTLENGTH_18TRANSFERS))
+
+#define IS_TIM_DMA_DATA_LENGTH(LENGTH) (((LENGTH) >= 0x1U) && ((LENGTH) < 0x10000U))
+
+#define IS_TIM_IC_FILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU)
+
+#define IS_TIM_DEADTIME(__DEADTIME__) ((__DEADTIME__) <= 0xFFU)
+
+#define IS_TIM_SLAVEMODE_TRIGGER_ENABLED(__TRIGGER__) ((__TRIGGER__) == TIM_SLAVEMODE_TRIGGER)
+
+#define TIM_SET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__, __ICPSC__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 |= (__ICPSC__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= ((__ICPSC__) << 8U)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= (__ICPSC__)) : ((__HANDLE__)->Instance->CCMR2 |= ((__ICPSC__) << 8U)))
+
+#define TIM_RESET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC) : ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC))
+
+#define TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCER |= (__POLARITY__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 4U)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 8U)) : ((__HANDLE__)->Instance->CCER |= (((__POLARITY__) << 12U))))
+
+#define TIM_RESET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC3P)) : ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC4P)))
+
+#define TIM_CHANNEL_STATE_GET(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? (__HANDLE__)->ChannelState[0] \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? (__HANDLE__)->ChannelState[1] : ((__CHANNEL__) == TIM_CHANNEL_3) ? (__HANDLE__)->ChannelState[2] : (__HANDLE__)->ChannelState[3])
+
+#define TIM_CHANNEL_STATE_SET(__HANDLE__, __CHANNEL__, __CHANNEL_STATE__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->ChannelState[0] = (__CHANNEL_STATE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->ChannelState[1] = (__CHANNEL_STATE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->ChannelState[2] = (__CHANNEL_STATE__)) : ((__HANDLE__)->ChannelState[3] = (__CHANNEL_STATE__)))
+
+#define TIM_CHANNEL_STATE_SET_ALL(__HANDLE__, __CHANNEL_STATE__) \
+ do { \
+ (__HANDLE__)->ChannelState[0] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelState[1] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelState[2] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelState[3] = (__CHANNEL_STATE__); \
+ } while (0)
+
+#define TIM_CHANNEL_N_STATE_GET(__HANDLE__, __CHANNEL__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? (__HANDLE__)->ChannelNState[0] \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? (__HANDLE__)->ChannelNState[1] : ((__CHANNEL__) == TIM_CHANNEL_3) ? (__HANDLE__)->ChannelNState[2] : (__HANDLE__)->ChannelNState[3])
+
+#define TIM_CHANNEL_N_STATE_SET(__HANDLE__, __CHANNEL__, __CHANNEL_STATE__) \
+ (((__CHANNEL__) == TIM_CHANNEL_1) \
+ ? ((__HANDLE__)->ChannelNState[0] = (__CHANNEL_STATE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->ChannelNState[1] = (__CHANNEL_STATE__)) \
+ : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->ChannelNState[2] = (__CHANNEL_STATE__)) : ((__HANDLE__)->ChannelNState[3] = (__CHANNEL_STATE__)))
+
+#define TIM_CHANNEL_N_STATE_SET_ALL(__HANDLE__, __CHANNEL_STATE__) \
+ do { \
+ (__HANDLE__)->ChannelNState[0] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelNState[1] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelNState[2] = (__CHANNEL_STATE__); \
+ (__HANDLE__)->ChannelNState[3] = (__CHANNEL_STATE__); \
+ } while (0)
+
+/**
+ * @}
+ */
+/* End of private macros -----------------------------------------------------*/
+
+/* Include TIM HAL Extended module */
#include "stm32f1xx_hal_tim_ex.h"
/* Exported functions --------------------------------------------------------*/
-/** @addtogroup TIM_Exported_Functions
+/** @addtogroup TIM_Exported_Functions TIM Exported Functions
* @{
*/
-/** @addtogroup TIM_Exported_Functions_Group1
+/** @addtogroup TIM_Exported_Functions_Group1 TIM Time Base functions
+ * @brief Time Base functions
* @{
*/
/* Time Base functions ********************************************************/
@@ -1479,10 +1790,11 @@ HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim);
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group2
+/** @addtogroup TIM_Exported_Functions_Group2 TIM Output Compare functions
+ * @brief TIM Output Compare functions
* @{
*/
-/* Timer Output Compare functions **********************************************/
+/* Timer Output Compare functions *********************************************/
HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim);
HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim);
void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim);
@@ -1496,15 +1808,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel);
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length);
HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
-
/**
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group3
+/** @addtogroup TIM_Exported_Functions_Group3 TIM PWM functions
+ * @brief TIM PWM functions
* @{
*/
-/* Timer PWM functions *********************************************************/
+/* Timer PWM functions ********************************************************/
HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim);
HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim);
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim);
@@ -1522,10 +1834,11 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group4
+/** @addtogroup TIM_Exported_Functions_Group4 TIM Input Capture functions
+ * @brief TIM Input Capture functions
* @{
*/
-/* Timer Input Capture functions ***********************************************/
+/* Timer Input Capture functions **********************************************/
HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim);
HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim);
void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim);
@@ -1543,10 +1856,11 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group5
+/** @addtogroup TIM_Exported_Functions_Group5 TIM One Pulse functions
+ * @brief TIM One Pulse functions
* @{
*/
-/* Timer One Pulse functions ***************************************************/
+/* Timer One Pulse functions **************************************************/
HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode);
HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim);
void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim);
@@ -1561,10 +1875,11 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Out
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group6
+/** @addtogroup TIM_Exported_Functions_Group6 TIM Encoder functions
+ * @brief TIM Encoder functions
* @{
*/
-/* Timer Encoder functions *****************************************************/
+/* Timer Encoder functions ****************************************************/
HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig);
HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim);
void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim);
@@ -1578,21 +1893,22 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chan
/* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length);
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel);
-
/**
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group7
+/** @addtogroup TIM_Exported_Functions_Group7 TIM IRQ handler management
+ * @brief IRQ handler management
* @{
*/
-/* Interrupt Handler functions **********************************************/
+/* Interrupt Handler functions ***********************************************/
void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim);
/**
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group8
+/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
+ * @brief Peripheral Control functions
* @{
*/
/* Control functions *********************************************************/
@@ -1603,37 +1919,52 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On
HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef *sClearInputConfig, uint32_t Channel);
HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig);
HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection);
-HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
-HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength);
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength);
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc);
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength);
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength);
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc);
HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource);
uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel);
-
/**
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group9
+/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
+ * @brief TIM Callbacks functions
* @{
*/
/* Callback in non blocking modes (Interrupt and DMA) *************************/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim);
void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim);
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim);
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim);
void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim);
+void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim);
void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim);
+
+/* Callbacks Register/UnRegister functions ***********************************/
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, pTIM_CallbackTypeDef pCallback);
+HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
/**
* @}
*/
-/** @addtogroup TIM_Exported_Functions_Group10
+/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
+ * @brief Peripheral State functions
* @{
*/
-/* Peripheral State functions **************************************************/
+/* Peripheral State functions ************************************************/
HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim);
HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim);
HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim);
@@ -1641,6 +1972,10 @@ HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim);
HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim);
HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim);
+/* Peripheral Channel state functions ************************************************/
+HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim);
+HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel);
+HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim);
/**
* @}
*/
@@ -1648,6 +1983,31 @@ HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim);
/**
* @}
*/
+/* End of exported functions -------------------------------------------------*/
+
+/* Private functions----------------------------------------------------------*/
+/** @defgroup TIM_Private_Functions TIM Private Functions
+ * @{
+ */
+void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure);
+void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
+void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
+void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter);
+
+void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma);
+void TIM_DMAError(DMA_HandleTypeDef *hdma);
+void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma);
+void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma);
+void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+void TIM_ResetCallback(TIM_HandleTypeDef *htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+/* End of private functions --------------------------------------------------*/
/**
* @}
@@ -1661,6 +2021,6 @@ HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim);
}
#endif
-#endif /* __STM32F1xx_HAL_TIM_H */
+#endif /* STM32F1xx_HAL_TIM_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h
index b7109519..278b4594 100644
--- a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h
+++ b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h
@@ -2,40 +2,24 @@
******************************************************************************
* @file stm32f1xx_hal_tim_ex.h
* @author MCD Application Team
- * @brief Header file of TIM HAL Extension module.
+ * @brief Header file of TIM HAL Extended module.
******************************************************************************
* @attention
*
- * © COPYRIGHT(c) 2016 STMicroelectronics
+ * © Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.
*
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
-#ifndef __STM32F1xx_HAL_TIM_EX_H
-#define __STM32F1xx_HAL_TIM_EX_H
+#ifndef STM32F1xx_HAL_TIM_EX_H
+#define STM32F1xx_HAL_TIM_EX_H
#ifdef __cplusplus
extern "C" {
@@ -53,7 +37,7 @@ extern "C" {
*/
/* Exported types ------------------------------------------------------------*/
-/** @defgroup TIMEx_Exported_Types TIMEx Exported Types
+/** @defgroup TIMEx_Exported_Types TIM Extended Exported Types
* @{
*/
@@ -62,69 +46,31 @@ extern "C" {
*/
typedef struct {
-
uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ref TIM_Input_Capture_Polarity */
uint32_t IC1Prescaler; /*!< Specifies the Input Capture Prescaler.
This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
- uint32_t IC1Filter; /*!< Specifies the input capture filter.
- This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+ uint32_t IC1Filter; /*!< Specifies the input capture filter.
+ This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */
+
uint32_t Commutation_Delay; /*!< Specifies the pulse value to be loaded into the Capture Compare Register.
This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */
} TIM_HallSensor_InitTypeDef;
-
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-
-/**
- * @brief TIM Break and Dead time configuration Structure definition
- */
-typedef struct {
- uint32_t OffStateRunMode; /*!< TIM off state in run mode
- This parameter can be a value of @ref TIM_OSSR_Off_State_Selection_for_Run_mode_state */
- uint32_t OffStateIDLEMode; /*!< TIM off state in IDLE mode
- This parameter can be a value of @ref TIM_OSSI_Off_State_Selection_for_Idle_mode_state */
- uint32_t LockLevel; /*!< TIM Lock level
- This parameter can be a value of @ref TIM_Lock_level */
- uint32_t DeadTime; /*!< TIM dead Time
- This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF */
- uint32_t BreakState; /*!< TIM Break State
- This parameter can be a value of @ref TIM_Break_Input_enable_disable */
- uint32_t BreakPolarity; /*!< TIM Break input polarity
- This parameter can be a value of @ref TIM_Break_Polarity */
- uint32_t AutomaticOutput; /*!< TIM Automatic Output Enable state
- This parameter can be a value of @ref TIM_AOE_Bit_Set_Reset */
-} TIM_BreakDeadTimeConfigTypeDef;
-
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
-/**
- * @brief TIM Master configuration Structure definition
- */
-typedef struct {
- uint32_t MasterOutputTrigger; /*!< Trigger output (TRGO) selection
- This parameter can be a value of @ref TIM_Master_Mode_Selection */
- uint32_t MasterSlaveMode; /*!< Master/slave mode selection
- This parameter can be a value of @ref TIM_Master_Slave_Mode */
-} TIM_MasterConfigTypeDef;
-
/**
* @}
*/
+/* End of exported types -----------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-/** @defgroup TIMEx_Exported_Constants TIMEx Exported Constants
+/** @defgroup TIMEx_Exported_Constants TIM Extended Exported Constants
* @{
*/
-/** @defgroup TIMEx_Clock_Filter TIMEx Clock Filter
+/** @defgroup TIMEx_Remap TIM Extended Remapping
* @{
*/
-#define IS_TIM_DEADTIME(DEADTIME) ((DEADTIME) <= 0xFFU) /*!< BreakDead Time */
/**
* @}
*/
@@ -132,54 +78,38 @@ typedef struct {
/**
* @}
*/
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
+/* End of exported constants -------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
-/**
- * @brief Sets the TIM Output compare preload.
- * @param __HANDLE__: TIM handle.
- * @param __CHANNEL__: TIM Channels to be configured.
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval None
+/** @defgroup TIMEx_Exported_Macros TIM Extended Exported Macros
+ * @{
*/
-#define __HAL_TIM_ENABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \
- (((__CHANNEL__) == TIM_CHANNEL_1) \
- ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1PE) \
- : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2PE) \
- : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3PE) : ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4PE))
/**
- * @brief Resets the TIM Output compare preload.
- * @param __HANDLE__: TIM handle.
- * @param __CHANNEL__: TIM Channels to be configured.
- * This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1: TIM Channel 1 selected
- * @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @retval None
+ * @}
*/
-#define __HAL_TIM_DISABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \
- (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 &= (uint16_t)~TIM_CCMR1_OC1PE) \
- : ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= (uint16_t)~TIM_CCMR1_OC2PE) \
- : ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= (uint16_t)~TIM_CCMR2_OC3PE) \
- : ((__HANDLE__)->Instance->CCMR2 &= (uint16_t)~TIM_CCMR2_OC4PE))
+/* End of exported macro -----------------------------------------------------*/
+
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup TIMEx_Private_Macros TIM Extended Private Macros
+ * @{
+ */
+
+/**
+ * @}
+ */
+/* End of private macro ------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
-/** @addtogroup TIMEx_Exported_Functions
+/** @addtogroup TIMEx_Exported_Functions TIM Extended Exported Functions
* @{
*/
-/** @addtogroup TIMEx_Exported_Functions_Group1
+/** @addtogroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
+ * @brief Timer Hall Sensor functions
* @{
*/
-/* Timer Hall Sensor functions **********************************************/
+/* Timer Hall Sensor functions **********************************************/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig);
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim);
@@ -199,12 +129,11 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim);
* @}
*/
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-
-/** @addtogroup TIMEx_Exported_Functions_Group2
+/** @addtogroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
+ * @brief Timer Complementary Output Compare functions
* @{
*/
-/* Timer Complementary Output Compare functions *****************************/
+/* Timer Complementary Output Compare functions *****************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
@@ -220,10 +149,11 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann
* @}
*/
-/** @addtogroup TIMEx_Exported_Functions_Group3
+/** @addtogroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
+ * @brief Timer Complementary PWM functions
* @{
*/
-/* Timer Complementary PWM functions ****************************************/
+/* Timer Complementary PWM functions ****************************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel);
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel);
@@ -238,10 +168,11 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan
* @}
*/
-/** @addtogroup TIMEx_Exported_Functions_Group4
+/** @addtogroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
+ * @brief Timer Complementary One Pulse functions
* @{
*/
-/* Timer Complementary One Pulse functions **********************************/
+/* Timer Complementary One Pulse functions **********************************/
/* Blocking mode: Polling */
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel);
@@ -252,49 +183,44 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t
/**
* @}
*/
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-/** @addtogroup TIMEx_Exported_Functions_Group5
+/** @addtogroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
+ * @brief Peripheral Control functions
* @{
*/
/* Extended Control functions ************************************************/
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
-HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig);
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource);
HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef *sMasterConfig);
+HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig);
+HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap);
/**
* @}
*/
-/** @addtogroup TIMEx_Exported_Functions_Group6
+/** @addtogroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
+ * @brief Extended Callbacks functions
* @{
*/
-/* Extension Callback *********************************************************/
-void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim);
+/* Extended Callback **********************************************************/
+void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim);
+void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim);
void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim);
/**
* @}
*/
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-/** @addtogroup TIMEx_Exported_Functions_Group7
+/** @addtogroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
+ * @brief Extended Peripheral State functions
* @{
*/
-/* Extension Peripheral State functions **************************************/
-HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim);
+/* Extended Peripheral State functions ***************************************/
+HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim);
+HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim, uint32_t ChannelN);
/**
* @}
*/
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
/**
* @}
@@ -302,10 +228,11 @@ HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim);
/* End of exported functions -------------------------------------------------*/
/* Private functions----------------------------------------------------------*/
-/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
+/** @addtogroup TIMEx_Private_Functions TIMEx Private Functions
* @{
*/
void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma);
+void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma);
/**
* @}
*/
@@ -323,6 +250,6 @@ void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma);
}
#endif
-#endif /* __STM32F1xx_HAL_TIM_EX_H */
+#endif /* STM32F1xx_HAL_TIM_EX_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c
index 010f50dd..1990dcc5 100644
--- a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c
+++ b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c
@@ -2,33 +2,33 @@
******************************************************************************
* @file stm32f1xx_hal_tim.c
* @author MCD Application Team
- * @brief TIM HAL module driver
+ * @brief TIM HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Timer (TIM) peripheral:
- * + Time Base Initialization
- * + Time Base Start
- * + Time Base Start Interruption
- * + Time Base Start DMA
- * + Time Output Compare/PWM Initialization
- * + Time Output Compare/PWM Channel Configuration
- * + Time Output Compare/PWM Start
- * + Time Output Compare/PWM Start Interruption
- * + Time Output Compare/PWM Start DMA
- * + Time Input Capture Initialization
- * + Time Input Capture Channel Configuration
- * + Time Input Capture Start
- * + Time Input Capture Start Interruption
- * + Time Input Capture Start DMA
- * + Time One Pulse Initialization
- * + Time One Pulse Channel Configuration
- * + Time One Pulse Start
- * + Time Encoder Interface Initialization
- * + Time Encoder Interface Start
- * + Time Encoder Interface Start Interruption
- * + Time Encoder Interface Start DMA
+ * + TIM Time Base Initialization
+ * + TIM Time Base Start
+ * + TIM Time Base Start Interruption
+ * + TIM Time Base Start DMA
+ * + TIM Output Compare/PWM Initialization
+ * + TIM Output Compare/PWM Channel Configuration
+ * + TIM Output Compare/PWM Start
+ * + TIM Output Compare/PWM Start Interruption
+ * + TIM Output Compare/PWM Start DMA
+ * + TIM Input Capture Initialization
+ * + TIM Input Capture Channel Configuration
+ * + TIM Input Capture Start
+ * + TIM Input Capture Start Interruption
+ * + TIM Input Capture Start DMA
+ * + TIM One Pulse Initialization
+ * + TIM One Pulse Channel Configuration
+ * + TIM One Pulse Start
+ * + TIM Encoder Interface Initialization
+ * + TIM Encoder Interface Start
+ * + TIM Encoder Interface Start Interruption
+ * + TIM Encoder Interface Start DMA
* + Commutation Event configuration with Interruption and DMA
- * + Time OCRef clear configuration
- * + Time External Clock configuration
+ * + TIM OCRef clear configuration
+ * + TIM External Clock configuration
@verbatim
==============================================================================
##### TIMER Generic features #####
@@ -42,12 +42,15 @@
(++) Output Compare
(++) PWM generation (Edge and Center-aligned Mode)
(++) One-pulse mode output
+ (#) Synchronization circuit to control the timer with external signals and to interconnect
+ several timers together.
+ (#) Supports incremental encoder for positioning purposes
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the TIM low level resources by implementing the following functions
- depending from feature used :
+ depending on the selected feature:
(++) Time Base : HAL_TIM_Base_MspInit()
(++) Input Capture : HAL_TIM_IC_MspInit()
(++) Output Compare : HAL_TIM_OC_MspInit()
@@ -76,8 +79,8 @@
PWM signal.
(++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
external signal.
- (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
- in One Pulse Mode.
+ (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
+ in One Pulse Mode.
(++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
(#) Activate the TIM peripheral using one of the start functions depending from the feature used:
@@ -92,33 +95,89 @@
HAL_TIM_DMABurst_WriteStart()
HAL_TIM_DMABurst_ReadStart()
+ *** Callback registration ***
+ =============================================
+
+ [..]
+ The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+
+ [..]
+ Use Function @ref HAL_TIM_RegisterCallback() to register a callback.
+ @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
+ the Callback ID and a pointer to the user callback function.
+
+ [..]
+ Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default
+ weak function.
+ @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+
+ [..]
+ These functions allow to register/unregister following callbacks:
+ (+) Base_MspInitCallback : TIM Base Msp Init Callback.
+ (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback.
+ (+) IC_MspInitCallback : TIM IC Msp Init Callback.
+ (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback.
+ (+) OC_MspInitCallback : TIM OC Msp Init Callback.
+ (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback.
+ (+) PWM_MspInitCallback : TIM PWM Msp Init Callback.
+ (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback.
+ (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback.
+ (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback.
+ (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback.
+ (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback.
+ (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback.
+ (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback.
+ (+) PeriodElapsedCallback : TIM Period Elapsed Callback.
+ (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback.
+ (+) TriggerCallback : TIM Trigger Callback.
+ (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback.
+ (+) IC_CaptureCallback : TIM Input Capture Callback.
+ (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback.
+ (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback.
+ (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback.
+ (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
+ (+) ErrorCallback : TIM Error Callback.
+ (+) CommutationCallback : TIM Commutation Callback.
+ (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback.
+ (+) BreakCallback : TIM Break Callback.
+
+ [..]
+By default, after the Init and when the state is HAL_TIM_STATE_RESET
+all interrupt callbacks are set to the corresponding weak functions:
+ examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback().
+
+ [..]
+ Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
+ functionalities in the Init / DeInit only when these callbacks are null
+ (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
+ keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
+
+ [..]
+ Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
+ Exception done MspInit / MspDeInit that can be registered / unregistered
+ in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
+ thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function.
+
+ [..]
+ When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
@endverbatim
******************************************************************************
* @attention
*
- * © COPYRIGHT(c) 2016 STMicroelectronics
+ * © Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.
*
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
@@ -139,38 +198,39 @@
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
-/* Private macro -------------------------------------------------------------*/
+/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
-/** @defgroup TIM_Private_Functions TIM Private Functions
+/** @addtogroup TIM_Private_Functions
* @{
*/
-static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
-static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
-static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
-static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
-static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
-static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
-static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter);
-static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
-static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
-static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
-
+static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
+static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
+static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
+static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
+static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
+static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
+static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
+static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter);
+static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
+static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
+static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig);
/**
* @}
*/
-
-/* Exported functions ---------------------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
/** @defgroup TIM_Exported_Functions TIM Exported Functions
* @{
*/
-/** @defgroup TIM_Exported_Functions_Group1 Time Base functions
- * @brief Time Base functions
- *
+/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
+ * @brief Time Base functions
+ *
@verbatim
==============================================================================
##### Time Base functions #####
@@ -191,12 +251,12 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp
*/
/**
* @brief Initializes the TIM Time base Unit according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
- * @param htim : TIM Base handle
+ * parameters in the TIM_HandleTypeDef and initialize the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
+ * @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) {
@@ -215,8 +275,19 @@ HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) {
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->Base_MspInitCallback == NULL) {
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->Base_MspInitCallback(htim);
+#else
/* Init the low level hardware : GPIO, CLOCK, NVIC */
HAL_TIM_Base_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
@@ -225,6 +296,13 @@ HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) {
/* Set the Time Base configuration */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
@@ -233,7 +311,7 @@ HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) {
/**
* @brief DeInitializes the TIM Base peripheral
- * @param htim : TIM Base handle
+ * @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) {
@@ -245,8 +323,23 @@ HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) {
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->Base_MspDeInitCallback == NULL) {
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->Base_MspDeInitCallback(htim);
+#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_Base_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
@@ -259,47 +352,60 @@ HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) {
/**
* @brief Initializes the TIM Base MSP.
- * @param htim : TIM handle
+ * @param htim TIM Base handle
* @retval None
*/
__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Base_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Base MSP.
- * @param htim : TIM handle
+ * @param htim TIM Base handle
* @retval None
*/
__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Base_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Base generation.
- * @param htim : TIM handle
+ * @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
+ /* Check the TIM state */
+ if (htim->State != HAL_TIM_STATE_READY) {
+ return HAL_ERROR;
+ }
+
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
-
- /* Change the TIM state*/
- htim->State = HAL_TIM_STATE_READY;
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -307,20 +413,17 @@ HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) {
/**
* @brief Stops the TIM Base generation.
- * @param htim : TIM handle
+ * @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) {
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
- /* Set the TIM state */
- htim->State = HAL_TIM_STATE_BUSY;
-
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the TIM state*/
+ /* Set the TIM state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
@@ -329,18 +432,35 @@ HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) {
/**
* @brief Starts the TIM Base generation in interrupt mode.
- * @param htim : TIM handle
+ * @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
+ /* Check the TIM state */
+ if (htim->State != HAL_TIM_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
/* Enable the TIM Update interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -348,56 +468,77 @@ HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) {
/**
* @brief Stops the TIM Base generation in interrupt mode.
- * @param htim : TIM handle
+ * @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) {
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(htim->Instance));
+
/* Disable the TIM Update interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Base generation in DMA mode.
- * @param htim : TIM handle
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to peripheral.
+ * @param htim TIM Base handle
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ /* Set the TIM state */
+ if (htim->State == HAL_TIM_STATE_BUSY) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if ((pData == 0U) && (Length > 0U)) {
+ } else if (htim->State == HAL_TIM_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
return HAL_ERROR;
} else {
htim->State = HAL_TIM_STATE_BUSY;
}
+ } else {
+ return HAL_ERROR;
}
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length);
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Update DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -405,7 +546,7 @@ HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pDat
/**
* @brief Stops the TIM Base generation in DMA mode.
- * @param htim : TIM handle
+ * @param htim TIM Base handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) {
@@ -415,10 +556,12 @@ HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) {
/* Disable the TIM Update DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
+ /* Set the TIM state */
htim->State = HAL_TIM_STATE_READY;
/* Return function status */
@@ -429,35 +572,35 @@ HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) {
* @}
*/
-/** @defgroup TIM_Exported_Functions_Group2 Time Output Compare functions
- * @brief Time Output Compare functions
- *
+/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
+ * @brief TIM Output Compare functions
+ *
@verbatim
==============================================================================
- ##### Time Output Compare functions #####
+ ##### TIM Output Compare functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Output Compare.
(+) De-initialize the TIM Output Compare.
- (+) Start the Time Output Compare.
- (+) Stop the Time Output Compare.
- (+) Start the Time Output Compare and enable interrupt.
- (+) Stop the Time Output Compare and disable interrupt.
- (+) Start the Time Output Compare and enable DMA transfer.
- (+) Stop the Time Output Compare and disable DMA transfer.
+ (+) Start the TIM Output Compare.
+ (+) Stop the TIM Output Compare.
+ (+) Start the TIM Output Compare and enable interrupt.
+ (+) Stop the TIM Output Compare and disable interrupt.
+ (+) Start the TIM Output Compare and enable DMA transfer.
+ (+) Stop the TIM Output Compare and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Output Compare according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
- * @param htim : TIM Output Compare handle
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
+ * @param htim TIM Output Compare handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) {
@@ -476,8 +619,19 @@ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) {
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->OC_MspInitCallback == NULL) {
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->OC_MspInitCallback(htim);
+#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OC_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
@@ -486,6 +640,13 @@ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) {
/* Init the base time for the Output Compare */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
@@ -494,7 +655,7 @@ HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) {
/**
* @brief DeInitializes the TIM peripheral
- * @param htim : TIM Output Compare handle
+ * @param htim TIM Output Compare handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) {
@@ -506,8 +667,23 @@ HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) {
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->OC_MspDeInitCallback == NULL) {
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->OC_MspDeInitCallback(htim);
+#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OC_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
@@ -520,34 +696,36 @@ HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) {
/**
* @brief Initializes the TIM Output Compare MSP.
- * @param htim : TIM handle
+ * @param htim TIM Output Compare handle
* @retval None
*/
__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OC_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Output Compare MSP.
- * @param htim : TIM handle
+ * @param htim TIM Output Compare handle
* @retval None
*/
__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OC_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Output Compare signal generation.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -556,9 +734,19 @@ __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) {
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
/* Enable the Output compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
@@ -567,8 +755,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
__HAL_TIM_MOE_ENABLE(htim);
}
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -576,8 +771,8 @@ HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
/**
* @brief Stops the TIM Output Compare signal generation.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -593,21 +788,24 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in interrupt mode.
- * @param htim : TIM OC handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -616,29 +814,43 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
switch (Channel) {
case TIM_CHANNEL_1: {
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -652,8 +864,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
__HAL_TIM_MOE_ENABLE(htim);
}
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -661,8 +880,8 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
/**
* @brief Stops the TIM Output Compare signal generation in interrupt mode.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -678,22 +897,26 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
case TIM_CHANNEL_1: {
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -703,99 +926,126 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Output Compare signal generation in DMA mode.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to TIM peripheral
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ /* Set the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if (((uint32_t)pData == 0U) && (Length > 0U)) {
+ } else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
return HAL_ERROR;
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
+ } else {
+ return HAL_ERROR;
}
+
switch (Channel) {
case TIM_CHANNEL_1: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -809,8 +1059,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
__HAL_TIM_MOE_ENABLE(htim);
}
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -818,8 +1075,8 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
/**
* @brief Stops the TIM Output Compare signal generation in DMA mode.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -835,22 +1092,30 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
case TIM_CHANNEL_1: {
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
case TIM_CHANNEL_4: {
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
default:
break;
@@ -860,15 +1125,15 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
@@ -878,35 +1143,35 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
* @}
*/
-/** @defgroup TIM_Exported_Functions_Group3 Time PWM functions
- * @brief Time PWM functions
- *
+/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
+ * @brief TIM PWM functions
+ *
@verbatim
==============================================================================
- ##### Time PWM functions #####
+ ##### TIM PWM functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM PWM.
(+) De-initialize the TIM PWM.
- (+) Start the Time PWM.
- (+) Stop the Time PWM.
- (+) Start the Time PWM and enable interrupt.
- (+) Stop the Time PWM and disable interrupt.
- (+) Start the Time PWM and enable DMA transfer.
- (+) Stop the Time PWM and disable DMA transfer.
+ (+) Start the TIM PWM.
+ (+) Stop the TIM PWM.
+ (+) Start the TIM PWM and enable interrupt.
+ (+) Stop the TIM PWM and disable interrupt.
+ (+) Start the TIM PWM and enable DMA transfer.
+ (+) Stop the TIM PWM and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM PWM Time Base according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
- * @param htim : TIM handle
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
+ * @param htim TIM PWM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) {
@@ -925,8 +1190,19 @@ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) {
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->PWM_MspInitCallback == NULL) {
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->PWM_MspInitCallback(htim);
+#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_PWM_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
@@ -935,6 +1211,13 @@ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) {
/* Init the base time for the PWM */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
@@ -943,7 +1226,7 @@ HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) {
/**
* @brief DeInitializes the TIM peripheral
- * @param htim : TIM handle
+ * @param htim TIM PWM handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) {
@@ -955,8 +1238,23 @@ HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) {
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->PWM_MspDeInitCallback == NULL) {
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->PWM_MspDeInitCallback(htim);
+#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_PWM_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
@@ -969,34 +1267,36 @@ HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) {
/**
* @brief Initializes the TIM PWM MSP.
- * @param htim : TIM handle
+ * @param htim TIM PWM handle
* @retval None
*/
__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PWM_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM PWM MSP.
- * @param htim : TIM handle
+ * @param htim TIM PWM handle
* @retval None
*/
__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_PWM_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the PWM signal generation.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1005,9 +1305,19 @@ __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) {
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
@@ -1016,8 +1326,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
__HAL_TIM_MOE_ENABLE(htim);
}
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -1025,8 +1342,8 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
/**
* @brief Stops the PWM signal generation.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1042,15 +1359,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
@@ -1058,8 +1375,8 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
/**
* @brief Starts the PWM signal generation in interrupt mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1068,29 +1385,42 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
switch (Channel) {
case TIM_CHANNEL_1: {
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -1104,8 +1434,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel
__HAL_TIM_MOE_ENABLE(htim);
}
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -1113,8 +1450,8 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel
/**
* @brief Stops the PWM signal generation in interrupt mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1130,22 +1467,26 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
case TIM_CHANNEL_1: {
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -1155,99 +1496,125 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM PWM signal generation in DMA mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to TIM peripheral
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ /* Set the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if (((uint32_t)pData == 0U) && (Length > 0U)) {
+ } else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
return HAL_ERROR;
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
+ } else {
+ return HAL_ERROR;
}
+
switch (Channel) {
case TIM_CHANNEL_1: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Output Capture/Compare 3 request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -1261,8 +1628,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channe
__HAL_TIM_MOE_ENABLE(htim);
}
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -1270,8 +1644,8 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channe
/**
* @brief Stops the TIM PWM signal generation in DMA mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1287,22 +1661,30 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
case TIM_CHANNEL_1: {
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
case TIM_CHANNEL_4: {
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
default:
break;
@@ -1312,15 +1694,15 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
@@ -1330,35 +1712,35 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
* @}
*/
-/** @defgroup TIM_Exported_Functions_Group4 Time Input Capture functions
- * @brief Time Input Capture functions
- *
+/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
+ * @brief TIM Input Capture functions
+ *
@verbatim
==============================================================================
- ##### Time Input Capture functions #####
+ ##### TIM Input Capture functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Input Capture.
(+) De-initialize the TIM Input Capture.
- (+) Start the Time Input Capture.
- (+) Stop the Time Input Capture.
- (+) Start the Time Input Capture and enable interrupt.
- (+) Stop the Time Input Capture and disable interrupt.
- (+) Start the Time Input Capture and enable DMA transfer.
- (+) Stop the Time Input Capture and disable DMA transfer.
+ (+) Start the TIM Input Capture.
+ (+) Stop the TIM Input Capture.
+ (+) Start the TIM Input Capture and enable interrupt.
+ (+) Stop the TIM Input Capture and disable interrupt.
+ (+) Start the TIM Input Capture and enable DMA transfer.
+ (+) Stop the TIM Input Capture and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM Input Capture Time base according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
- * @param htim : TIM Input Capture handle
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
+ * @param htim TIM Input Capture handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) {
@@ -1377,8 +1759,19 @@ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) {
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->IC_MspInitCallback == NULL) {
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->IC_MspInitCallback(htim);
+#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_IC_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
@@ -1387,6 +1780,13 @@ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) {
/* Init the base time for the input capture */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
@@ -1395,7 +1795,7 @@ HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) {
/**
* @brief DeInitializes the TIM peripheral
- * @param htim : TIM Input Capture handle
+ * @param htim TIM Input Capture handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) {
@@ -1407,8 +1807,23 @@ HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) {
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->IC_MspDeInitCallback == NULL) {
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->IC_MspDeInitCallback(htim);
+#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
HAL_TIM_IC_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
@@ -1421,34 +1836,36 @@ HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) {
/**
* @brief Initializes the TIM Input Capture MSP.
- * @param htim : TIM handle
+ * @param htim TIM Input Capture handle
* @retval None
*/
__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_IC_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Input Capture MSP.
- * @param htim : TIM handle
+ * @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_IC_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Input Capture measurement.
- * @param htim : TIM Input Capture handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1457,14 +1874,34 @@ __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) {
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM channel state */
+ if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -1472,8 +1909,8 @@ HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
/**
* @brief Stops the TIM Input Capture measurement.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1491,14 +1928,18 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Input Capture measurement in interrupt mode.
- * @param htim : TIM Input Capture handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1507,29 +1948,46 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM channel state */
+ if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
switch (Channel) {
case TIM_CHANNEL_1: {
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
/* Enable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -1537,8 +1995,15 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -1546,8 +2011,8 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
/**
* @brief Stops the TIM Input Capture measurement in interrupt mode.
- * @param htim : TIM handle
- * @param Channel : TIM Channels to be disabled
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1563,22 +2028,26 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
case TIM_CHANNEL_1: {
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
/* Disable the TIM Capture/Compare 4 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -1590,94 +2059,122 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Input Capture measurement in DMA mode.
- * @param htim : TIM Input Capture handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
* @arg TIM_CHANNEL_4: TIM Channel 4 selected
- * @param pData : The destination Buffer address.
- * @param Length : The length of data to be transferred from TIM peripheral to memory.
+ * @param pData The destination Buffer address.
+ * @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ /* Set the TIM channel state */
+ if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if ((pData == 0U) && (Length > 0U)) {
+ } else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((pData == NULL) && (Length > 0U)) {
return HAL_ERROR;
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
+ } else {
+ return HAL_ERROR;
}
switch (Channel) {
case TIM_CHANNEL_1: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
- } break;
+ break;
+ }
default:
break;
@@ -1686,8 +2183,15 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
/* Enable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -1695,8 +2199,8 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
/**
* @brief Stops the TIM Input Capture measurement in DMA mode.
- * @param htim : TIM Input Capture handle
- * @param Channel : TIM Channels to be disabled
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1709,39 +2213,48 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
+ /* Disable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
switch (Channel) {
case TIM_CHANNEL_1: {
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
case TIM_CHANNEL_4: {
/* Disable the TIM Capture/Compare 4 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
default:
break;
}
- /* Disable the Input Capture channel */
- TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
-
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
@@ -1750,39 +2263,42 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
* @}
*/
-/** @defgroup TIM_Exported_Functions_Group5 Time One Pulse functions
- * @brief Time One Pulse functions
- *
+/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
+ * @brief TIM One Pulse functions
+ *
@verbatim
==============================================================================
- ##### Time One Pulse functions #####
+ ##### TIM One Pulse functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM One Pulse.
(+) De-initialize the TIM One Pulse.
- (+) Start the Time One Pulse.
- (+) Stop the Time One Pulse.
- (+) Start the Time One Pulse and enable interrupt.
- (+) Stop the Time One Pulse and disable interrupt.
- (+) Start the Time One Pulse and enable DMA transfer.
- (+) Stop the Time One Pulse and disable DMA transfer.
+ (+) Start the TIM One Pulse.
+ (+) Stop the TIM One Pulse.
+ (+) Start the TIM One Pulse and enable interrupt.
+ (+) Stop the TIM One Pulse and disable interrupt.
+ (+) Start the TIM One Pulse and enable DMA transfer.
+ (+) Stop the TIM One Pulse and disable DMA transfer.
@endverbatim
* @{
*/
/**
* @brief Initializes the TIM One Pulse Time Base according to the specified
- * parameters in the TIM_HandleTypeDef and create the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
- * @param htim : TIM OnePulse handle
- * @param OnePulseMode : Select the One pulse mode.
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
+ * @note When the timer instance is initialized in One Pulse mode, timer
+ * channels 1 and channel 2 are reserved and cannot be used for other
+ * purpose.
+ * @param htim TIM One Pulse handle
+ * @param OnePulseMode Select the One pulse mode.
* This parameter can be one of the following values:
* @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
- * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses wil be generated.
+ * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) {
@@ -1795,15 +2311,26 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePul
assert_param(IS_TIM_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
- assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
assert_param(IS_TIM_OPM_MODE(OnePulseMode));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
if (htim->State == HAL_TIM_STATE_RESET) {
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->OnePulse_MspInitCallback == NULL) {
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->OnePulse_MspInitCallback(htim);
+#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_OnePulse_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
@@ -1818,6 +2345,15 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePul
/* Configure the OPM Mode */
htim->Instance->CR1 |= OnePulseMode;
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
@@ -1826,7 +2362,7 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePul
/**
* @brief DeInitializes the TIM One Pulse
- * @param htim : TIM One Pulse handle
+ * @param htim TIM One Pulse handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) {
@@ -1838,8 +2374,25 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) {
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->OnePulse_MspDeInitCallback == NULL) {
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->OnePulse_MspDeInitCallback(htim);
+#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_OnePulse_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
@@ -1852,43 +2405,62 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) {
/**
* @brief Initializes the TIM One Pulse MSP.
- * @param htim : TIM handle
+ * @param htim TIM One Pulse handle
* @retval None
*/
__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OnePulse_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM One Pulse MSP.
- * @param htim : TIM handle
+ * @param htim TIM One Pulse handle
* @retval None
*/
__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM One Pulse signal generation.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channels to be enabled
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+
/* Enable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
@@ -1912,8 +2484,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t Outpu
/**
* @brief Stops the TIM One Pulse signal generation.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channels to be disable
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channels to be disable
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1933,30 +2505,53 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t Output
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM One Pulse signal generation in interrupt mode.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channels to be enabled
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
/* Prevent unused argument(s) compilation warning */
UNUSED(OutputChannel);
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+
/* Enable the Capture compare and the Input Capture channels
(in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
@@ -1986,8 +2581,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t Ou
/**
* @brief Stops the TIM One Pulse signal generation in interrupt mode.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channels to be enabled
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2012,13 +2607,19 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Out
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) {
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
@@ -2027,41 +2628,47 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Out
* @}
*/
-/** @defgroup TIM_Exported_Functions_Group6 Time Encoder functions
- * @brief Time Encoder functions
- *
+/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
+ * @brief TIM Encoder functions
+ *
@verbatim
==============================================================================
- ##### Time Encoder functions #####
+ ##### TIM Encoder functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the TIM Encoder.
(+) De-initialize the TIM Encoder.
- (+) Start the Time Encoder.
- (+) Stop the Time Encoder.
- (+) Start the Time Encoder and enable interrupt.
- (+) Stop the Time Encoder and disable interrupt.
- (+) Start the Time Encoder and enable DMA transfer.
- (+) Stop the Time Encoder and disable DMA transfer.
+ (+) Start the TIM Encoder.
+ (+) Stop the TIM Encoder.
+ (+) Start the TIM Encoder and enable interrupt.
+ (+) Stop the TIM Encoder and disable interrupt.
+ (+) Start the TIM Encoder and enable DMA transfer.
+ (+) Stop the TIM Encoder and disable DMA transfer.
@endverbatim
* @{
*/
/**
- * @brief Initializes the TIM Encoder Interface and create the associated handle.
- * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
- * requires a timer reset to avoid unexpected direction
- * due to DIR bit readonly in center aligned mode.
- * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
- * @param htim : TIM Encoder Interface handle
- * @param sConfig : TIM Encoder Interface configuration structure
+ * @brief Initializes the TIM Encoder Interface and initialize the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
+ * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together
+ * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
+ * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
+ * @note When the timer instance is initialized in Encoder mode, timer
+ * channels 1 and channel 2 are reserved and cannot be used for other
+ * purpose.
+ * @param htim TIM Encoder Interface handle
+ * @param sConfig TIM Encoder Interface configuration structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) {
- uint32_t tmpsmcr = 0U;
- uint32_t tmpccmr1 = 0U;
- uint32_t tmpccer = 0U;
+ uint32_t tmpsmcr;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
/* Check the TIM handle allocation */
if (htim == NULL) {
@@ -2069,15 +2676,15 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init
}
/* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
- assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
- assert_param(IS_TIM_IC_POLARITY(sConfig->IC2Polarity));
+ assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
+ assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
@@ -2087,15 +2694,26 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->Encoder_MspInitCallback == NULL) {
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->Encoder_MspInitCallback(htim);
+#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIM_Encoder_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
htim->State = HAL_TIM_STATE_BUSY;
- /* Reset the SMS bits */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
+ /* Reset the SMS and ECE bits */
+ htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
/* Configure the Time base in the Encoder Mode */
TIM_Base_SetConfig(htim->Instance, &htim->Init);
@@ -2116,7 +2734,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init
tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
- /* Set the the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
+ /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
@@ -2124,7 +2742,6 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init
/* Set the TI1 and the TI2 Polarities */
tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
- tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
/* Write to TIMx SMCR */
@@ -2136,6 +2753,15 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init
/* Write to TIMx CCER */
htim->Instance->CCER = tmpccer;
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
@@ -2144,7 +2770,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_Init
/**
* @brief DeInitializes the TIM Encoder interface
- * @param htim : TIM Encoder handle
+ * @param htim TIM Encoder Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) {
@@ -2156,8 +2782,25 @@ HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) {
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->Encoder_MspDeInitCallback == NULL) {
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->Encoder_MspDeInitCallback(htim);
+#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIM_Encoder_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
@@ -2170,34 +2813,36 @@ HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) {
/**
* @brief Initializes the TIM Encoder Interface MSP.
- * @param htim : TIM handle
+ * @param htim TIM Encoder Interface handle
* @retval None
*/
__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Encoder_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Encoder Interface MSP.
- * @param htim : TIM handle
+ * @param htim TIM Encoder Interface handle
* @retval None
*/
__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Encoder Interface.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2205,8 +2850,40 @@ __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) {
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
/* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1) {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else if (Channel == TIM_CHANNEL_2) {
+ if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
/* Enable the encoder interface channels */
switch (Channel) {
@@ -2214,10 +2891,12 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channe
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
break;
}
+
case TIM_CHANNEL_2: {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
break;
}
+
default: {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
@@ -2233,8 +2912,8 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channe
/**
* @brief Stops the TIM Encoder Interface.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be disabled
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2243,19 +2922,21 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channe
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) {
/* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
- (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
+ (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
switch (Channel) {
case TIM_CHANNEL_1: {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
break;
}
+
case TIM_CHANNEL_2: {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
break;
}
+
default: {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
@@ -2266,14 +2947,25 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Encoder Interface in interrupt mode.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2281,8 +2973,40 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
/* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1) {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else if (Channel == TIM_CHANNEL_2) {
+ if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
/* Enable the encoder interface channels */
/* Enable the capture compare Interrupts 1 and/or 2 */
@@ -2292,11 +3016,13 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Cha
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
break;
}
+
case TIM_CHANNEL_2: {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
break;
}
+
default: {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
@@ -2315,8 +3041,8 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Cha
/**
* @brief Stops the TIM Encoder Interface in interrupt mode.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be disabled
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2325,7 +3051,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Cha
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
/* Check the parameters */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
@@ -2351,8 +3077,16 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chan
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
/* Return function status */
return HAL_OK;
@@ -2360,42 +3094,86 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chan
/**
* @brief Starts the TIM Encoder Interface in DMA mode.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
- * @param pData1 : The destination Buffer address for IC1.
- * @param pData2 : The destination Buffer address for IC2.
- * @param Length : The length of data to be transferred from TIM peripheral to memory.
+ * @param pData1 The destination Buffer address for IC1.
+ * @param pData2 The destination Buffer address for IC2.
+ * @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length) {
- /* Check the parameters */
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
- return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if ((((pData1 == 0U) || (pData2 == 0U))) && (Length > 0U)) {
- return HAL_ERROR;
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1) {
+ if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
+ return HAL_BUSY;
+ } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((pData1 == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ return HAL_ERROR;
+ }
+ } else if (Channel == TIM_CHANNEL_2) {
+ if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
+ return HAL_BUSY;
+ } else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((pData2 == NULL) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
+ }
+ } else {
+ if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
+ || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
+ return HAL_BUSY;
+ } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
+ && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) {
+ return HAL_ERROR;
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ } else {
+ return HAL_ERROR;
}
}
switch (Channel) {
case TIM_CHANNEL_1: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
@@ -2404,17 +3182,21 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Ch
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
@@ -2423,27 +3205,35 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Ch
/* Enable the Capture compare channel */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
- } break;
+ break;
+ }
case TIM_CHANNEL_ALL: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length);
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the Peripheral */
__HAL_TIM_ENABLE(htim);
@@ -2455,19 +3245,21 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Ch
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
/* Enable the TIM Input Capture DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ break;
+ }
default:
break;
}
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM Encoder Interface in DMA mode.
- * @param htim : TIM Encoder Interface handle
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2476,7 +3268,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Ch
*/
HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) {
/* Check the parameters */
- assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channels 1 and 2
(in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
@@ -2485,11 +3277,13 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha
/* Disable the capture compare DMA Request 1 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
} else if (Channel == TIM_CHANNEL_2) {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
/* Disable the capture compare DMA Request 2 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
} else {
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
@@ -2497,13 +3291,23 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha
/* Disable the capture compare DMA Request 1 and 2 */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
}
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
/* Return function status */
return HAL_OK;
@@ -2513,8 +3317,8 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha
* @}
*/
/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
- * @brief IRQ handler management
- *
+ * @brief TIM IRQ handler management
+ *
@verbatim
==============================================================================
##### IRQ handler management #####
@@ -2527,7 +3331,7 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha
*/
/**
* @brief This function handles TIM interrupts requests.
- * @param htim : TIM handle
+ * @param htim TIM handle
* @retval None
*/
void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
@@ -2540,12 +3344,21 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
/* Input capture event */
if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Output compare event */
else {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
HAL_TIM_OC_DelayElapsedCallback(htim);
HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
@@ -2558,12 +3371,21 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
/* Input capture event */
if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Output compare event */
else {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
HAL_TIM_OC_DelayElapsedCallback(htim);
HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
@@ -2575,12 +3397,21 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
/* Input capture event */
if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Output compare event */
else {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
HAL_TIM_OC_DelayElapsedCallback(htim);
HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
@@ -2592,12 +3423,21 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
/* Input capture event */
if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Output compare event */
else {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
HAL_TIM_OC_DelayElapsedCallback(htim);
HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
@@ -2606,28 +3446,44 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) {
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) {
__HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedCallback(htim);
+#else
HAL_TIM_PeriodElapsedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
/* TIM Break input event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) {
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) {
__HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->BreakCallback(htim);
+#else
HAL_TIMEx_BreakCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
/* TIM Trigger detection event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) {
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) {
__HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerCallback(htim);
+#else
HAL_TIM_TriggerCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
/* TIM commutation event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) {
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET) {
__HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
- HAL_TIMEx_CommutationCallback(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->CommutationCallback(htim);
+#else
+ HAL_TIMEx_CommutCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
}
}
@@ -2636,9 +3492,9 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
* @}
*/
-/** @defgroup TIM_Exported_Functions_Group8 Peripheral Control functions
- * @brief Peripheral Control functions
- *
+/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
+ * @brief TIM Peripheral Control functions
+ *
@verbatim
==============================================================================
##### Peripheral Control functions #####
@@ -2658,9 +3514,9 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) {
/**
* @brief Initializes the TIM Output Compare Channels according to the specified
* parameters in the TIM_OC_InitTypeDef.
- * @param htim : TIM Output Compare handle
- * @param sConfig : TIM Output Compare configuration structure
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM Output Compare handle
+ * @param sConfig TIM Output Compare configuration structure
+ * @param Channel TIM Channels to configure
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2674,40 +3530,49 @@ HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitT
assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
- /* Check input state */
+ /* Process Locked */
__HAL_LOCK(htim);
- htim->State = HAL_TIM_STATE_BUSY;
-
switch (Channel) {
case TIM_CHANNEL_1: {
+ /* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
/* Configure the TIM Channel 1 in Output Compare */
TIM_OC1_SetConfig(htim->Instance, sConfig);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
+ /* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
/* Configure the TIM Channel 2 in Output Compare */
TIM_OC2_SetConfig(htim->Instance, sConfig);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
+ /* Check the parameters */
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
/* Configure the TIM Channel 3 in Output Compare */
TIM_OC3_SetConfig(htim->Instance, sConfig);
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
+ /* Check the parameters */
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
/* Configure the TIM Channel 4 in Output Compare */
TIM_OC4_SetConfig(htim->Instance, sConfig);
- } break;
+ break;
+ }
default:
break;
}
- htim->State = HAL_TIM_STATE_READY;
__HAL_UNLOCK(htim);
@@ -2717,9 +3582,9 @@ HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitT
/**
* @brief Initializes the TIM Input Capture Channels according to the specified
* parameters in the TIM_IC_InitTypeDef.
- * @param htim : TIM IC handle
- * @param sConfig : TIM Input Capture configuration structure
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM IC handle
+ * @param sConfig TIM Input Capture configuration structure
+ * @param Channel TIM Channel to configure
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2735,10 +3600,9 @@ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitT
assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
+ /* Process Locked */
__HAL_LOCK(htim);
- htim->State = HAL_TIM_STATE_BUSY;
-
if (Channel == TIM_CHANNEL_1) {
/* TI1 Configuration */
TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, sConfig->ICSelection, sConfig->ICFilter);
@@ -2783,8 +3647,6 @@ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitT
htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
}
- htim->State = HAL_TIM_STATE_READY;
-
__HAL_UNLOCK(htim);
return HAL_OK;
@@ -2793,9 +3655,9 @@ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitT
/**
* @brief Initializes the TIM PWM channels according to the specified
* parameters in the TIM_OC_InitTypeDef.
- * @param htim : TIM handle
- * @param sConfig : TIM PWM configuration structure
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM PWM handle
+ * @param sConfig TIM PWM configuration structure
+ * @param Channel TIM Channels to be configured
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -2804,19 +3666,20 @@ HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitT
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef *sConfig, uint32_t Channel) {
- __HAL_LOCK(htim);
-
/* Check the parameters */
assert_param(IS_TIM_CHANNELS(Channel));
assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
- htim->State = HAL_TIM_STATE_BUSY;
+ /* Process Locked */
+ __HAL_LOCK(htim);
switch (Channel) {
case TIM_CHANNEL_1: {
+ /* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
/* Configure the Channel 1 in PWM mode */
TIM_OC1_SetConfig(htim->Instance, sConfig);
@@ -2826,10 +3689,13 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init
/* Configure the Output Fast mode */
htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
htim->Instance->CCMR1 |= sConfig->OCFastMode;
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
+ /* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
/* Configure the Channel 2 in PWM mode */
TIM_OC2_SetConfig(htim->Instance, sConfig);
@@ -2838,11 +3704,14 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init
/* Configure the Output Fast mode */
htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
- htim->Instance->CCMR1 |= sConfig->OCFastMode << 8;
- } break;
+ htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
+ break;
+ }
case TIM_CHANNEL_3: {
+ /* Check the parameters */
assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
/* Configure the Channel 3 in PWM mode */
TIM_OC3_SetConfig(htim->Instance, sConfig);
@@ -2852,10 +3721,13 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init
/* Configure the Output Fast mode */
htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
htim->Instance->CCMR2 |= sConfig->OCFastMode;
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
+ /* Check the parameters */
assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
/* Configure the Channel 4 in PWM mode */
TIM_OC4_SetConfig(htim->Instance, sConfig);
@@ -2864,15 +3736,14 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init
/* Configure the Output Fast mode */
htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
- htim->Instance->CCMR2 |= sConfig->OCFastMode << 8;
- } break;
+ htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
+ break;
+ }
default:
break;
}
- htim->State = HAL_TIM_STATE_READY;
-
__HAL_UNLOCK(htim);
return HAL_OK;
@@ -2881,16 +3752,20 @@ HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_Init
/**
* @brief Initializes the TIM One Pulse Channels according to the specified
* parameters in the TIM_OnePulse_InitTypeDef.
- * @param htim : TIM One Pulse handle
- * @param sConfig : TIM One Pulse configuration structure
- * @param OutputChannel : TIM Channels to be enabled
+ * @param htim TIM One Pulse handle
+ * @param sConfig TIM One Pulse configuration structure
+ * @param OutputChannel TIM output channel to configure
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
- * @param InputChannel : TIM Channels to be enabled
+ * @param InputChannel TIM input Channel to configure
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @note To output a waveform with a minimum delay user can enable the fast
+ * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
+ * output is forced in response to the edge detection on TIx input,
+ * without taking in account the comparison.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, uint32_t OutputChannel, uint32_t InputChannel) {
@@ -2901,11 +3776,12 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On
assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
if (OutputChannel != InputChannel) {
+ /* Process Locked */
__HAL_LOCK(htim);
htim->State = HAL_TIM_STATE_BUSY;
- /* Extract the Ouput compare configuration from sConfig structure */
+ /* Extract the Output compare configuration from sConfig structure */
temp1.OCMode = sConfig->OCMode;
temp1.Pulse = sConfig->Pulse;
temp1.OCPolarity = sConfig->OCPolarity;
@@ -2918,15 +3794,18 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
TIM_OC1_SetConfig(htim->Instance, &temp1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
TIM_OC2_SetConfig(htim->Instance, &temp1);
- } break;
+ break;
+ }
default:
break;
}
+
switch (InputChannel) {
case TIM_CHANNEL_1: {
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
@@ -2943,7 +3822,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On
/* Select the Slave Mode */
htim->Instance->SMCR &= ~TIM_SMCR_SMS;
htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
@@ -2959,7 +3839,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On
/* Select the Slave Mode */
htim->Instance->SMCR &= ~TIM_SMCR_SMS;
htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
- } break;
+ break;
+ }
default:
break;
@@ -2977,8 +3858,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On
/**
* @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
- * @param htim : TIM handle
- * @param BurstBaseAddress : TIM Base address from where the DMA will start the Data write
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
* This parameter can be one of the following values:
* @arg TIM_DMABASE_CR1
* @arg TIM_DMABASE_CR2
@@ -2998,8 +3879,7 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On
* @arg TIM_DMABASE_CCR3
* @arg TIM_DMABASE_CCR4
* @arg TIM_DMABASE_BDTR
- * @arg TIM_DMABASE_DCR
- * @param BurstRequestSrc : TIM DMA Request sources
+ * @param BurstRequestSrc TIM DMA Request sources
* This parameter can be one of the following values:
* @arg TIM_DMA_UPDATE: TIM update Interrupt source
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
@@ -3008,117 +3888,197 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_On
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
* @arg TIM_DMA_COM: TIM Commutation DMA source
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
- * @param BurstBuffer : The Buffer address.
- * @param BurstLength : DMA Burst length. This parameter can be one value
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @note This function should be used only when BurstLength is equal to DMA data transfer length.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) {
+ return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, ((BurstLength) >> 8U) + 1U);
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @param DataLength Data length. This parameter can be one value
+ * between 1 and 0xFFFF.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength) {
/* Check the parameters */
assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
assert_param(IS_TIM_DMA_LENGTH(BurstLength));
+ assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if ((BurstBuffer == 0U) && (BurstLength > 0U)) {
+ } else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) {
+ if ((BurstBuffer == NULL) && (BurstLength > 0U)) {
return HAL_ERROR;
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
}
+ } else {
+ /* nothing to do */
}
switch (BurstRequestSrc) {
case TIM_DMA_UPDATE: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_CC1: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_CC2: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_CC3: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_CC4: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_COM: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ /* Set the DMA commutation callbacks */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_TRIGGER: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
+ /* Set the DMA trigger callbacks */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
default:
break;
}
- /* configure the DMA Burst Mode */
- htim->Instance->DCR = BurstBaseAddress | BurstLength;
+ /* Configure the DMA Burst Mode */
+ htim->Instance->DCR = (BurstBaseAddress | BurstLength);
/* Enable the TIM DMA Request */
__HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
- htim->State = HAL_TIM_STATE_READY;
-
/* Return function status */
return HAL_OK;
}
/**
* @brief Stops the TIM DMA Burst mode
- * @param htim : TIM handle
- * @param BurstRequestSrc : TIM DMA Request sources to disable
+ * @param htim TIM handle
+ * @param BurstRequestSrc TIM DMA Request sources to disable
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) {
@@ -3128,26 +4088,33 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t B
/* Abort the DMA transfer (at least disable the DMA channel) */
switch (BurstRequestSrc) {
case TIM_DMA_UPDATE: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+ break;
+ }
case TIM_DMA_CC1: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
case TIM_DMA_CC2: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
case TIM_DMA_CC3: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
case TIM_DMA_CC4: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
case TIM_DMA_COM: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
+ break;
+ }
case TIM_DMA_TRIGGER: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
+ break;
+ }
default:
break;
}
@@ -3155,14 +4122,17 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t B
/* Disable the TIM Update DMA request */
__HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
- * @param htim : TIM handle
- * @param BurstBaseAddress : TIM Base address from where the DMA will starts the Data read
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
* This parameter can be one of the following values:
* @arg TIM_DMABASE_CR1
* @arg TIM_DMABASE_CR2
@@ -3182,8 +4152,7 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t B
* @arg TIM_DMABASE_CCR3
* @arg TIM_DMABASE_CCR4
* @arg TIM_DMABASE_BDTR
- * @arg TIM_DMABASE_DCR
- * @param BurstRequestSrc : TIM DMA Request sources
+ * @param BurstRequestSrc TIM DMA Request sources
* This parameter can be one of the following values:
* @arg TIM_DMA_UPDATE: TIM update Interrupt source
* @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
@@ -3192,118 +4161,198 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t B
* @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
* @arg TIM_DMA_COM: TIM Commutation DMA source
* @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
- * @param BurstBuffer : The Buffer address.
- * @param BurstLength : DMA Burst length. This parameter can be one value
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
* between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @note This function should be used only when BurstLength is equal to DMA data transfer length.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) {
+ return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, ((BurstLength) >> 8U) + 1U);
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @param DataLength Data length. This parameter can be one value
+ * between 1 and 0xFFFF.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength, uint32_t DataLength) {
/* Check the parameters */
assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
assert_param(IS_TIM_DMA_LENGTH(BurstLength));
+ assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if ((BurstBuffer == 0U) && (BurstLength > 0U)) {
+ } else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) {
+ if ((BurstBuffer == NULL) && (BurstLength > 0U)) {
return HAL_ERROR;
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
}
+ } else {
+ /* nothing to do */
}
switch (BurstRequestSrc) {
case TIM_DMA_UPDATE: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_CC1: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_CC2: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_CC3: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_CC4: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_COM: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ /* Set the DMA commutation callbacks */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
case TIM_DMA_TRIGGER: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
+ /* Set the DMA trigger callbacks */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
- } break;
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, DataLength) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
default:
break;
}
- /* configure the DMA Burst Mode */
- htim->Instance->DCR = BurstBaseAddress | BurstLength;
+ /* Configure the DMA Burst Mode */
+ htim->Instance->DCR = (BurstBaseAddress | BurstLength);
/* Enable the TIM DMA Request */
__HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
- htim->State = HAL_TIM_STATE_READY;
-
/* Return function status */
return HAL_OK;
}
/**
* @brief Stop the DMA burst reading
- * @param htim : TIM handle
- * @param BurstRequestSrc : TIM DMA Request sources to disable.
+ * @param htim TIM handle
+ * @param BurstRequestSrc TIM DMA Request sources to disable.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) {
@@ -3313,26 +4362,33 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t Bu
/* Abort the DMA transfer (at least disable the DMA channel) */
switch (BurstRequestSrc) {
case TIM_DMA_UPDATE: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+ break;
+ }
case TIM_DMA_CC1: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
case TIM_DMA_CC2: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
case TIM_DMA_CC3: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
case TIM_DMA_CC4: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
case TIM_DMA_COM: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
+ break;
+ }
case TIM_DMA_TRIGGER: {
- HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
+ break;
+ }
default:
break;
}
@@ -3340,14 +4396,17 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t Bu
/* Disable the TIM Update DMA request */
__HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Generate a software event
- * @param htim : TIM handle
- * @param EventSource : specifies the event source.
+ * @param htim TIM handle
+ * @param EventSource specifies the event source.
* This parameter can be one of the following values:
* @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
* @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
@@ -3357,8 +4416,10 @@ HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t Bu
* @arg TIM_EVENTSOURCE_COM: Timer COM event source
* @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
* @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
- * @note TIM6 and TIM7 can only generate an update event.
- * @note TIM_EVENTSOURCE_COM and TIM_EVENTSOURCE_BREAK are used only with TIM1, TIM15, TIM16 and TIM17.
+ * @note Basic timers can only generate an update event.
+ * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
+ * @note TIM_EVENTSOURCE_BREAK are relevant only for timer instances
+ * supporting a break input.
* @retval HAL status
*/
@@ -3387,10 +4448,10 @@ HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventS
/**
* @brief Configures the OCRef clear feature
- * @param htim : TIM handle
- * @param sClearInputConfig : pointer to a TIM_ClearInputConfigTypeDef structure that
+ * @param htim TIM handle
+ * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
* contains the OCREF clear feature and parameters for the TIM peripheral.
- * @param Channel : specifies the TIM Channel
+ * @param Channel specifies the TIM Channel
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1
* @arg TIM_CHANNEL_2: TIM Channel 2
@@ -3399,14 +4460,9 @@ HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventS
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef *sClearInputConfig, uint32_t Channel) {
- uint32_t tmpsmcr = 0U;
-
/* Check the parameters */
assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
- assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
- assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
- assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
/* Process Locked */
__HAL_LOCK(htim);
@@ -3415,62 +4471,73 @@ HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInp
switch (sClearInputConfig->ClearInputSource) {
case TIM_CLEARINPUTSOURCE_NONE: {
-
- /* Clear the ETR Bits */
- tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
-
- /* Set TIMx_SMCR */
- htim->Instance->SMCR = tmpsmcr;
- } break;
+ /* Clear the OCREF clear selection bit and the the ETR Bits */
+ CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
+ break;
+ }
case TIM_CLEARINPUTSOURCE_ETR: {
- TIM_ETR_SetConfig(htim->Instance, sClearInputConfig->ClearInputPrescaler, sClearInputConfig->ClearInputPolarity, sClearInputConfig->ClearInputFilter);
+ /* Check the parameters */
+ assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
+ assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
+ assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
+
+ /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
+ if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
+
+ TIM_ETR_SetConfig(htim->Instance, sClearInputConfig->ClearInputPrescaler, sClearInputConfig->ClearInputPolarity, sClearInputConfig->ClearInputFilter);
+ break;
+ }
- } break;
default:
break;
}
switch (Channel) {
case TIM_CHANNEL_1: {
- if (sClearInputConfig->ClearInputState != RESET) {
- /* Enable the Ocref clear feature for Channel 1 */
- htim->Instance->CCMR1 |= TIM_CCMR1_OC1CE;
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) {
+ /* Enable the OCREF clear feature for Channel 1 */
+ SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
} else {
- /* Disable the Ocref clear feature for Channel 1 */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1CE;
+ /* Disable the OCREF clear feature for Channel 1 */
+ CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
}
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- if (sClearInputConfig->ClearInputState != RESET) {
- /* Enable the Ocref clear feature for Channel 2 */
- htim->Instance->CCMR1 |= TIM_CCMR1_OC2CE;
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) {
+ /* Enable the OCREF clear feature for Channel 2 */
+ SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
} else {
- /* Disable the Ocref clear feature for Channel 2 */
- htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2CE;
+ /* Disable the OCREF clear feature for Channel 2 */
+ CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
}
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
- assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
- if (sClearInputConfig->ClearInputState != RESET) {
- /* Enable the Ocref clear feature for Channel 3 */
- htim->Instance->CCMR2 |= TIM_CCMR2_OC3CE;
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) {
+ /* Enable the OCREF clear feature for Channel 3 */
+ SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
} else {
- /* Disable the Ocref clear feature for Channel 3 */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3CE;
+ /* Disable the OCREF clear feature for Channel 3 */
+ CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
}
- } break;
+ break;
+ }
case TIM_CHANNEL_4: {
- assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
- if (sClearInputConfig->ClearInputState != RESET) {
- /* Enable the Ocref clear feature for Channel 4 */
- htim->Instance->CCMR2 |= TIM_CCMR2_OC4CE;
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) {
+ /* Enable the OCREF clear feature for Channel 4 */
+ SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
} else {
- /* Disable the Ocref clear feature for Channel 4 */
- htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4CE;
+ /* Disable the OCREF clear feature for Channel 4 */
+ CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
}
- } break;
+ break;
+ }
default:
break;
}
@@ -3484,13 +4551,13 @@ HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInp
/**
* @brief Configures the clock source to be used
- * @param htim : TIM handle
- * @param sClockSourceConfig : pointer to a TIM_ClockConfigTypeDef structure that
+ * @param htim TIM handle
+ * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
* contains the clock source information for the TIM peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) {
- uint32_t tmpsmcr = 0U;
+ uint32_t tmpsmcr;
/* Process Locked */
__HAL_LOCK(htim);
@@ -3509,133 +4576,94 @@ HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockCo
switch (sClockSourceConfig->ClockSource) {
case TIM_CLOCKSOURCE_INTERNAL: {
assert_param(IS_TIM_INSTANCE(htim->Instance));
- /* Disable slave mode to clock the prescaler directly with the internal clock */
- htim->Instance->SMCR &= ~TIM_SMCR_SMS;
- } break;
+ break;
+ }
- // case TIM_CLOCKSOURCE_ETRMODE1:
- // {
- // /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
- // assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
- //
- // /* Check ETR input conditioning related parameters */
- // assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
- // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
- //
- // /* Configure the ETR Clock source */
- // TIM_ETR_SetConfig(htim->Instance,
- // sClockSourceConfig->ClockPrescaler,
- // sClockSourceConfig->ClockPolarity,
- // sClockSourceConfig->ClockFilter);
- // /* Get the TIMx SMCR register value */
- // tmpsmcr = htim->Instance->SMCR;
- // /* Reset the SMS and TS Bits */
- // tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
- // /* Select the External clock mode1 and the ETRF trigger */
- // tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
- // /* Write to TIMx SMCR */
- // htim->Instance->SMCR = tmpsmcr;
- // }
- // break;
- //
- // case TIM_CLOCKSOURCE_ETRMODE2:
- // {
- // /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
- // assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
- //
- // /* Check ETR input conditioning related parameters */
- // assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
- // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
- //
- // /* Configure the ETR Clock source */
- // TIM_ETR_SetConfig(htim->Instance,
- // sClockSourceConfig->ClockPrescaler,
- // sClockSourceConfig->ClockPolarity,
- // sClockSourceConfig->ClockFilter);
- // /* Enable the External clock mode2 */
- // htim->Instance->SMCR |= TIM_SMCR_ECE;
- // }
- // break;
- //
- // case TIM_CLOCKSOURCE_TI1:
- // {
- // /* Check whether or not the timer instance supports external clock mode 1 */
- // assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
- //
- // /* Check TI1 input conditioning related parameters */
- // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
- //
- // TIM_TI1_ConfigInputStage(htim->Instance,
- // sClockSourceConfig->ClockPolarity,
- // sClockSourceConfig->ClockFilter);
- // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
- // }
- // break;
- // case TIM_CLOCKSOURCE_TI2:
- // {
- // /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
- // assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
- //
- // /* Check TI2 input conditioning related parameters */
- // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
- //
- // TIM_TI2_ConfigInputStage(htim->Instance,
- // sClockSourceConfig->ClockPolarity,
- // sClockSourceConfig->ClockFilter);
- // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
- // }
- // break;
- // case TIM_CLOCKSOURCE_TI1ED:
- // {
- // /* Check whether or not the timer instance supports external clock mode 1 */
- // assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
- //
- // /* Check TI1 input conditioning related parameters */
- // assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
- // assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
- //
- // TIM_TI1_ConfigInputStage(htim->Instance,
- // sClockSourceConfig->ClockPolarity,
- // sClockSourceConfig->ClockFilter);
- // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
- // }
- // break;
- // case TIM_CLOCKSOURCE_ITR0:
- // {
- // /* Check whether or not the timer instance supports external clock mode 1 */
- // assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
- //
- // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR0);
- // }
- // break;
- // case TIM_CLOCKSOURCE_ITR1:
- // {
- // /* Check whether or not the timer instance supports external clock mode 1 */
- // assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
- //
- // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR1);
- // }
- // break;
- // case TIM_CLOCKSOURCE_ITR2:
- // {
- // /* Check whether or not the timer instance supports external clock mode 1 */
- // assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
- //
- // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR2);
- // }
- // break;
- // case TIM_CLOCKSOURCE_ITR3:
- // {
- // /* Check whether or not the timer instance supports external clock mode 1 */
- // assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
- //
- // TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR3);
- // }
- // break;
+ case TIM_CLOCKSOURCE_ETRMODE1: {
+ /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
+
+ /* Check ETR input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETR_SetConfig(htim->Instance, sClockSourceConfig->ClockPrescaler, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+
+ /* Select the External clock mode1 and the ETRF trigger */
+ tmpsmcr = htim->Instance->SMCR;
+ tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
+ /* Write to TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_ETRMODE2: {
+ /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
+
+ /* Check ETR input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETR_SetConfig(htim->Instance, sClockSourceConfig->ClockPrescaler, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+ /* Enable the External clock mode2 */
+ htim->Instance->SMCR |= TIM_SMCR_ECE;
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI1: {
+ /* Check whether or not the timer instance supports external clock mode 1 */
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI1 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI1_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI2: {
+ /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI2 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI2_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI1ED: {
+ /* Check whether or not the timer instance supports external clock mode 1 */
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI1 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI1_ConfigInputStage(htim->Instance, sClockSourceConfig->ClockPolarity, sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_ITR0:
+ case TIM_CLOCKSOURCE_ITR1:
+ case TIM_CLOCKSOURCE_ITR2:
+ case TIM_CLOCKSOURCE_ITR3: {
+ /* Check whether or not the timer instance supports internal trigger input */
+ assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
+
+ TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
+ break;
+ }
default:
break;
@@ -3650,8 +4678,8 @@ HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockCo
/**
* @brief Selects the signal connected to the TI1 input: direct from CH1_input
* or a XOR combination between CH1_input, CH2_input & CH3_input
- * @param htim : TIM handle.
- * @param TI1_Selection : Indicate whether or not channel 1 is connected to the
+ * @param htim TIM handle.
+ * @param TI1_Selection Indicate whether or not channel 1 is connected to the
* output of a XOR gate.
* This parameter can be one of the following values:
* @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
@@ -3660,7 +4688,7 @@ HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockCo
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) {
- uint32_t tmpcr2 = 0U;
+ uint32_t tmpcr2;
/* Check the parameters */
assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
@@ -3672,7 +4700,7 @@ HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_S
/* Reset the TI1 selection */
tmpcr2 &= ~TIM_CR2_TI1S;
- /* Set the the TI1 selection */
+ /* Set the TI1 selection */
tmpcr2 |= TI1_Selection;
/* Write to TIMxCR2 */
@@ -3683,14 +4711,14 @@ HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_S
/**
* @brief Configures the TIM in Slave mode
- * @param htim : TIM handle.
- * @param sSlaveConfig : pointer to a TIM_SlaveConfigTypeDef structure that
+ * @param htim TIM handle.
+ * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
* contains the selected trigger (internal trigger input, filtered
- * timer input or external trigger input) and the ) and the Slave
- * mode (Disable, Reset, Gated, Trigger, External clock mode 1).
+ * timer input or external trigger input) and the Slave mode
+ * (Disable, Reset, Gated, Trigger, External clock mode 1).
* @retval HAL status
*/
-HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
/* Check the parameters */
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
@@ -3700,7 +4728,11 @@ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TI
htim->State = HAL_TIM_STATE_BUSY;
- TIM_SlaveTimer_SetConfig(htim, sSlaveConfig);
+ if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
/* Disable Trigger Interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
@@ -3717,14 +4749,14 @@ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TI
/**
* @brief Configures the TIM in Slave mode in interrupt mode
- * @param htim: TIM handle.
- * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that
+ * @param htim TIM handle.
+ * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
* contains the selected trigger (internal trigger input, filtered
- * timer input or external trigger input) and the ) and the Slave
- * mode (Disable, Reset, Gated, Trigger, External clock mode 1).
+ * timer input or external trigger input) and the Slave mode
+ * (Disable, Reset, Gated, Trigger, External clock mode 1).
* @retval HAL status
*/
-HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
/* Check the parameters */
assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
@@ -3734,7 +4766,11 @@ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim,
htim->State = HAL_TIM_STATE_BUSY;
- TIM_SlaveTimer_SetConfig(htim, sSlaveConfig);
+ if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
/* Enable Trigger Interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
@@ -3751,20 +4787,18 @@ HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim,
/**
* @brief Read the captured value from Capture Compare unit
- * @param htim : TIM handle.
- * @param Channel : TIM Channels to be enabled
+ * @param htim TIM handle.
+ * @param Channel TIM Channels to be enabled
* This parameter can be one of the following values:
- * @arg TIM_CHANNEL_1 : TIM Channel 1 selected
- * @arg TIM_CHANNEL_2 : TIM Channel 2 selected
- * @arg TIM_CHANNEL_3 : TIM Channel 3 selected
- * @arg TIM_CHANNEL_4 : TIM Channel 4 selected
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
* @retval Captured value
*/
uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) {
uint32_t tmpreg = 0U;
- __HAL_LOCK(htim);
-
switch (Channel) {
case TIM_CHANNEL_1: {
/* Check the parameters */
@@ -3809,7 +4843,6 @@ uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) {
break;
}
- __HAL_UNLOCK(htim);
return tmpreg;
}
@@ -3818,113 +4851,642 @@ uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) {
*/
/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
- * @brief TIM Callbacks functions
- *
+ * @brief TIM Callbacks functions
+ *
@verbatim
==============================================================================
##### TIM Callbacks functions #####
==============================================================================
[..]
This section provides TIM callback functions:
- (+) Timer Period elapsed callback
- (+) Timer Output Compare callback
- (+) Timer Input capture callback
- (+) Timer Trigger callback
- (+) Timer Error callback
+ (+) TIM Period elapsed callback
+ (+) TIM Output Compare callback
+ (+) TIM Input capture callback
+ (+) TIM Trigger callback
+ (+) TIM Error callback
@endverbatim
* @{
*/
/**
- * @brief Period elapsed callback in non blocking mode
- * @param htim : TIM handle
+ * @brief Period elapsed callback in non-blocking mode
+ * @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the __HAL_TIM_PeriodElapsedCallback could be implemented in the user file
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
*/
}
+
/**
- * @brief Output Compare callback in non blocking mode
- * @param htim : TIM OC handle
+ * @brief Period elapsed half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Output Compare callback in non-blocking mode
+ * @param htim TIM OC handle
* @retval None
*/
__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the __HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
*/
}
+
/**
- * @brief Input Capture callback in non blocking mode
- * @param htim : TIM IC handle
+ * @brief Input Capture callback in non-blocking mode
+ * @param htim TIM IC handle
* @retval None
*/
__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the __HAL_TIM_IC_CaptureCallback could be implemented in the user file
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_CaptureCallback could be implemented in the user file
*/
}
/**
- * @brief PWM Pulse finished callback in non blocking mode
- * @param htim : TIM handle
+ * @brief Input Capture half complete callback in non-blocking mode
+ * @param htim TIM IC handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief PWM Pulse finished callback in non-blocking mode
+ * @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the __HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
*/
}
/**
- * @brief Hall Trigger detection callback in non blocking mode
- * @param htim : TIM handle
+ * @brief PWM Pulse finished half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Hall Trigger detection callback in non-blocking mode
+ * @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_TriggerCallback could be implemented in the user file
*/
}
/**
- * @brief Timer error callback in non blocking mode
- * @param htim : TIM handle
+ * @brief Hall Trigger detection half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Timer error callback in non-blocking mode
+ * @param htim TIM handle
* @retval None
*/
__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIM_ErrorCallback could be implemented in the user file
*/
}
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User TIM callback to be used instead of the weak predefined callback
+ * @param htim tim handle
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
+ * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
+ * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
+ * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
+ * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
+ * @param pCallback pointer to the callback function
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, pTIM_CallbackTypeDef pCallback) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL) {
+ return HAL_ERROR;
+ }
+ /* Process locked */
+ __HAL_LOCK(htim);
+
+ if (htim->State == HAL_TIM_STATE_READY) {
+ switch (CallbackID) {
+ case HAL_TIM_BASE_MSPINIT_CB_ID:
+ htim->Base_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID:
+ htim->Base_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID:
+ htim->IC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID:
+ htim->IC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID:
+ htim->OC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID:
+ htim->OC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID:
+ htim->PWM_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID:
+ htim->PWM_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID:
+ htim->OnePulse_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID:
+ htim->OnePulse_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID:
+ htim->Encoder_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID:
+ htim->Encoder_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID:
+ htim->HallSensor_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID:
+ htim->HallSensor_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_CB_ID:
+ htim->PeriodElapsedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID:
+ htim->PeriodElapsedHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_TRIGGER_CB_ID:
+ htim->TriggerCallback = pCallback;
+ break;
+
+ case HAL_TIM_TRIGGER_HALF_CB_ID:
+ htim->TriggerHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_CAPTURE_CB_ID:
+ htim->IC_CaptureCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_CAPTURE_HALF_CB_ID:
+ htim->IC_CaptureHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_DELAY_ELAPSED_CB_ID:
+ htim->OC_DelayElapsedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_CB_ID:
+ htim->PWM_PulseFinishedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID:
+ htim->PWM_PulseFinishedHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_ERROR_CB_ID:
+ htim->ErrorCallback = pCallback;
+ break;
+
+ case HAL_TIM_COMMUTATION_CB_ID:
+ htim->CommutationCallback = pCallback;
+ break;
+
+ case HAL_TIM_COMMUTATION_HALF_CB_ID:
+ htim->CommutationHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_BREAK_CB_ID:
+ htim->BreakCallback = pCallback;
+ break;
+
+ default:
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else if (htim->State == HAL_TIM_STATE_RESET) {
+ switch (CallbackID) {
+ case HAL_TIM_BASE_MSPINIT_CB_ID:
+ htim->Base_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID:
+ htim->Base_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID:
+ htim->IC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID:
+ htim->IC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID:
+ htim->OC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID:
+ htim->OC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID:
+ htim->PWM_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID:
+ htim->PWM_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID:
+ htim->OnePulse_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID:
+ htim->OnePulse_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID:
+ htim->Encoder_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID:
+ htim->Encoder_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID:
+ htim->HallSensor_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID:
+ htim->HallSensor_MspDeInitCallback = pCallback;
+ break;
+
+ default:
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+
+/**
+ * @brief Unregister a TIM callback
+ * TIM callback is redirected to the weak predefined callback
+ * @param htim tim handle
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
+ * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
+ * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
+ * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
+ * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) {
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(htim);
+
+ if (htim->State == HAL_TIM_STATE_READY) {
+ switch (CallbackID) {
+ case HAL_TIM_BASE_MSPINIT_CB_ID:
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID:
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID:
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID:
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID:
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID:
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID:
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID:
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID:
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID:
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID:
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID:
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID:
+ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID:
+ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_CB_ID:
+ htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak Period Elapsed Callback */
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID:
+ htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak Period Elapsed half complete Callback */
+ break;
+
+ case HAL_TIM_TRIGGER_CB_ID:
+ htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak Trigger Callback */
+ break;
+
+ case HAL_TIM_TRIGGER_HALF_CB_ID:
+ htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak Trigger half complete Callback */
+ break;
+
+ case HAL_TIM_IC_CAPTURE_CB_ID:
+ htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC Capture Callback */
+ break;
+
+ case HAL_TIM_IC_CAPTURE_HALF_CB_ID:
+ htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC Capture half complete Callback */
+ break;
+
+ case HAL_TIM_OC_DELAY_ELAPSED_CB_ID:
+ htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC Delay Elapsed Callback */
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_CB_ID:
+ htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM Pulse Finished Callback */
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID:
+ htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM Pulse Finished half complete Callback */
+ break;
+
+ case HAL_TIM_ERROR_CB_ID:
+ htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak Error Callback */
+ break;
+
+ case HAL_TIM_COMMUTATION_CB_ID:
+ htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak Commutation Callback */
+ break;
+
+ case HAL_TIM_COMMUTATION_HALF_CB_ID:
+ htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak Commutation half complete Callback */
+ break;
+
+ case HAL_TIM_BREAK_CB_ID:
+ htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak Break Callback */
+ break;
+
+ default:
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else if (htim->State == HAL_TIM_STATE_RESET) {
+ switch (CallbackID) {
+ case HAL_TIM_BASE_MSPINIT_CB_ID:
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; /* Legacy weak Base MspInit Callback */
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID:
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; /* Legacy weak Base Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID:
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; /* Legacy weak IC Msp Init Callback */
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID:
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; /* Legacy weak IC Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID:
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; /* Legacy weak OC Msp Init Callback */
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID:
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; /* Legacy weak OC Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID:
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; /* Legacy weak PWM Msp Init Callback */
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID:
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; /* Legacy weak PWM Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID:
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; /* Legacy weak One Pulse Msp Init Callback */
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID:
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; /* Legacy weak One Pulse Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID:
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; /* Legacy weak Encoder Msp Init Callback */
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID:
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; /* Legacy weak Encoder Msp DeInit Callback */
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID:
+ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; /* Legacy weak Hall Sensor Msp Init Callback */
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID:
+ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; /* Legacy weak Hall Sensor Msp DeInit Callback */
+ break;
+
+ default:
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ } else {
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
/**
* @}
*/
-/** @defgroup TIM_Exported_Functions_Group10 Peripheral State functions
- * @brief Peripheral State functions
- *
+/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
+ * @brief TIM Peripheral State functions
+ *
@verbatim
==============================================================================
##### Peripheral State functions #####
==============================================================================
[..]
- This subsection permit to get in run-time the status of the peripheral
+ This subsection permits to get in run-time the status of the peripheral
and the data flow.
@endverbatim
@@ -3932,47 +5494,90 @@ __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) {
*/
/**
- * @brief Return the TIM Base state
- * @param htim : TIM Base handle
+ * @brief Return the TIM Base handle state.
+ * @param htim TIM Base handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
/**
- * @brief Return the TIM OC state
- * @param htim : TIM Ouput Compare handle
+ * @brief Return the TIM OC handle state.
+ * @param htim TIM Output Compare handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
/**
- * @brief Return the TIM PWM state
- * @param htim : TIM handle
+ * @brief Return the TIM PWM handle state.
+ * @param htim TIM handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
/**
- * @brief Return the TIM Input Capture state
- * @param htim : TIM IC handle
+ * @brief Return the TIM Input Capture handle state.
+ * @param htim TIM IC handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
/**
- * @brief Return the TIM One Pulse Mode state
- * @param htim : TIM OPM handle
+ * @brief Return the TIM One Pulse Mode handle state.
+ * @param htim TIM OPM handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
/**
- * @brief Return the TIM Encoder Mode state
- * @param htim : TIM Encoder handle
+ * @brief Return the TIM Encoder Mode handle state.
+ * @param htim TIM Encoder Interface handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+/**
+ * @brief Return the TIM Encoder Mode handle state.
+ * @param htim TIM handle
+ * @retval Active channel
+ */
+HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim) { return htim->Channel; }
+
+/**
+ * @brief Return actual state of the TIM channel.
+ * @param htim TIM handle
+ * @param Channel TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @arg TIM_CHANNEL_4: TIM Channel 4
+ * @arg TIM_CHANNEL_5: TIM Channel 5
+ * @arg TIM_CHANNEL_6: TIM Channel 6
+ * @retval TIM Channel state
+ */
+HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ HAL_TIM_ChannelStateTypeDef channel_state;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+
+ return channel_state;
+}
+
+/**
+ * @brief Return actual state of a DMA burst operation.
+ * @param htim TIM handle
+ * @retval DMA burst state
+ */
+HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim) {
+ /* Check the parameters */
+ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
+
+ return htim->DMABurstState;
+}
+
/**
* @}
*/
@@ -3981,32 +5586,95 @@ HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) { return
* @}
*/
-/** @addtogroup TIM_Private_Functions
+/** @defgroup TIM_Private_Functions TIM Private Functions
* @{
*/
/**
* @brief TIM DMA error callback
- * @param hdma : pointer to DMA handle.
+ * @param hdma pointer to DMA handle.
* @retval None
*/
void TIM_DMAError(DMA_HandleTypeDef *hdma) {
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
- htim->State = HAL_TIM_STATE_READY;
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->ErrorCallback(htim);
+#else
HAL_TIM_ErrorCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief TIM DMA Delay Pulse complete callback.
- * @param hdma : pointer to DMA handle.
+ * @param hdma pointer to DMA handle.
* @retval None
*/
-void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) {
+static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) {
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
- htim->State = HAL_TIM_STATE_READY;
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Delay Pulse half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
@@ -4016,21 +5684,75 @@ void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
} else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ } else {
+ /* nothing to do */
}
- HAL_TIM_PWM_PulseFinishedCallback(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PWM_PulseFinishedHalfCpltCallback(htim);
+#else
+ HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
+
/**
* @brief TIM DMA Capture complete callback.
- * @param hdma : pointer to DMA handle.
+ * @param hdma pointer to DMA handle.
* @retval None
*/
void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) {
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
- htim->State = HAL_TIM_STATE_READY;
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Capture half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
@@ -4040,48 +5762,96 @@ void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
} else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ } else {
+ /* nothing to do */
}
- HAL_TIM_IC_CaptureCallback(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureHalfCpltCallback(htim);
+#else
+ HAL_TIM_IC_CaptureHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
}
/**
* @brief TIM DMA Period Elapse complete callback.
- * @param hdma : pointer to DMA handle.
+ * @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) {
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
- htim->State = HAL_TIM_STATE_READY;
+ if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedCallback(htim);
+#else
HAL_TIM_PeriodElapsedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Period Elapse half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedHalfCpltCallback(htim);
+#else
+ HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/**
* @brief TIM DMA Trigger callback.
- * @param hdma : pointer to DMA handle.
+ * @param hdma pointer to DMA handle.
* @retval None
*/
static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) {
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
- htim->State = HAL_TIM_STATE_READY;
+ if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerCallback(htim);
+#else
HAL_TIM_TriggerCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Trigger half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerHalfCpltCallback(htim);
+#else
+ HAL_TIM_TriggerHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/**
* @brief Time Base configuration
- * @param TIMx : TIM periheral
- * @param Structure : TIM Base configuration structure
+ * @param TIMx TIM peripheral
+ * @param Structure TIM Base configuration structure
* @retval None
*/
void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) {
- uint32_t tmpcr1 = 0U;
- tmpcr1 = TIMx->CR1;
+ uint32_t tmpcr1;
+ tmpcr1 = TIMx->CR1;
/* Set TIM Time Base Unit parameters ---------------------------------------*/
if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) {
@@ -4097,8 +5867,7 @@ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) {
}
/* Set the auto-reload preload */
- tmpcr1 &= ~TIM_CR1_ARPE;
- tmpcr1 |= (uint32_t)Structure->AutoReloadPreload;
+ MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
TIMx->CR1 = tmpcr1;
@@ -4106,7 +5875,7 @@ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) {
TIMx->ARR = (uint32_t)Structure->Period;
/* Set the Prescaler value */
- TIMx->PSC = (uint32_t)Structure->Prescaler;
+ TIMx->PSC = Structure->Prescaler;
if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) {
/* Set the Repetition Counter value */
@@ -4114,20 +5883,20 @@ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) {
}
/* Generate an update event to reload the Prescaler
- and the repetition counter(only for TIM1 and TIM8) value immediatly */
+ and the repetition counter (only for advanced timer) value immediately */
TIMx->EGR = TIM_EGR_UG;
}
/**
- * @brief Time Ouput Compare 1 configuration
+ * @brief Timer Output Compare 1 configuration
* @param TIMx to select the TIM peripheral
- * @param OC_Config : The ouput configuration structure
+ * @param OC_Config The output configuration structure
* @retval None
*/
static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
- uint32_t tmpccmrx = 0U;
- uint32_t tmpccer = 0U;
- uint32_t tmpcr2 = 0U;
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
/* Disable the Channel 1: Reset the CC1E Bit */
TIMx->CCER &= ~TIM_CCER_CC1E;
@@ -4176,6 +5945,7 @@ static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
/* Set the Output N Idle state */
tmpcr2 |= OC_Config->OCNIdleState;
}
+
/* Write to TIMx CR2 */
TIMx->CR2 = tmpcr2;
@@ -4190,15 +5960,15 @@ static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
}
/**
- * @brief Time Ouput Compare 2 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config : The ouput configuration structure
+ * @brief Timer Output Compare 2 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
* @retval None
*/
void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
- uint32_t tmpccmrx = 0U;
- uint32_t tmpccer = 0U;
- uint32_t tmpcr2 = 0U;
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
/* Disable the Channel 2: Reset the CC2E Bit */
TIMx->CCER &= ~TIM_CCER_CC2E;
@@ -4243,9 +6013,9 @@ void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
tmpcr2 &= ~TIM_CR2_OIS2;
tmpcr2 &= ~TIM_CR2_OIS2N;
/* Set the Output Idle state */
- tmpcr2 |= (OC_Config->OCIdleState << 2);
+ tmpcr2 |= (OC_Config->OCIdleState << 2U);
/* Set the Output N Idle state */
- tmpcr2 |= (OC_Config->OCNIdleState << 2);
+ tmpcr2 |= (OC_Config->OCNIdleState << 2U);
}
/* Write to TIMx CR2 */
@@ -4262,15 +6032,15 @@ void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
}
/**
- * @brief Time Ouput Compare 3 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config : The ouput configuration structure
+ * @brief Timer Output Compare 3 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
* @retval None
*/
static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
- uint32_t tmpccmrx = 0U;
- uint32_t tmpccer = 0U;
- uint32_t tmpcr2 = 0U;
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
/* Disable the Channel 3: Reset the CC2E Bit */
TIMx->CCER &= ~TIM_CCER_CC3E;
@@ -4333,15 +6103,15 @@ static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
}
/**
- * @brief Time Ouput Compare 4 configuration
- * @param TIMx to select the TIM peripheral
- * @param OC_Config : The ouput configuration structure
+ * @brief Timer Output Compare 4 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
* @retval None
*/
static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) {
- uint32_t tmpccmrx = 0U;
- uint32_t tmpccer = 0U;
- uint32_t tmpcr2 = 0U;
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
/* Disable the Channel 4: Reset the CC4E Bit */
TIMx->CCER &= ~TIM_CCER_CC4E;
@@ -4367,12 +6137,14 @@ static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
tmpccer |= (OC_Config->OCPolarity << 12U);
if (IS_TIM_BREAK_INSTANCE(TIMx)) {
+ /* Check parameters */
assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
/* Reset the Output Compare IDLE State */
tmpcr2 &= ~TIM_CR2_OIS4;
+
/* Set the Output Idle state */
- tmpcr2 |= (OC_Config->OCIdleState << 6);
+ tmpcr2 |= (OC_Config->OCIdleState << 6U);
}
/* Write to TIMx CR2 */
@@ -4389,16 +6161,15 @@ static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
}
/**
- * @brief Time Slave configuration
- * @param htim: pointer to a TIM_HandleTypeDef structure that contains
- * the configuration information for TIM module.
- * @param sSlaveConfig: The slave configuration structure
+ * @brief Slave Timer configuration function
+ * @param htim TIM handle
+ * @param sSlaveConfig Slave timer configuration
* @retval None
*/
-static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
- uint32_t tmpsmcr = 0U;
- uint32_t tmpccmr1 = 0U;
- uint32_t tmpccer = 0U;
+static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) {
+ uint32_t tmpsmcr;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
/* Get the TIMx SMCR register value */
tmpsmcr = htim->Instance->SMCR;
@@ -4426,13 +6197,18 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
/* Configure the ETR Trigger source */
TIM_ETR_SetConfig(htim->Instance, sSlaveConfig->TriggerPrescaler, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
- } break;
+ break;
+ }
case TIM_TS_TI1F_ED: {
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+ if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) {
+ return HAL_ERROR;
+ }
+
/* Disable the Channel 1: Reset the CC1E Bit */
tmpccer = htim->Instance->CCER;
htim->Instance->CCER &= ~TIM_CCER_CC1E;
@@ -4445,8 +6221,8 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp
/* Write to TIMx CCMR1 and CCER registers */
htim->Instance->CCMR1 = tmpccmr1;
htim->Instance->CCER = tmpccer;
-
- } break;
+ break;
+ }
case TIM_TS_TI1FP1: {
/* Check the parameters */
@@ -4456,7 +6232,8 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp
/* Configure TI1 Filter and Polarity */
TIM_TI1_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
- } break;
+ break;
+ }
case TIM_TS_TI2FP2: {
/* Check the parameters */
@@ -4466,47 +6243,38 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp
/* Configure TI2 Filter and Polarity */
TIM_TI2_ConfigInputStage(htim->Instance, sSlaveConfig->TriggerPolarity, sSlaveConfig->TriggerFilter);
- } break;
-
- case TIM_TS_ITR0: {
- /* Check the parameter */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- } break;
-
- case TIM_TS_ITR1: {
- /* Check the parameter */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- } break;
-
- case TIM_TS_ITR2: {
- /* Check the parameter */
- assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- } break;
+ break;
+ }
+ case TIM_TS_ITR0:
+ case TIM_TS_ITR1:
+ case TIM_TS_ITR2:
case TIM_TS_ITR3: {
/* Check the parameter */
assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
- } break;
+ break;
+ }
default:
break;
}
+ return HAL_OK;
}
/**
* @brief Configure the TI1 as Input.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity : The Input Polarity.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection : specifies the input to be used.
+ * @param TIM_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
- * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
- * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
@@ -4514,8 +6282,8 @@ static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, TIM_SlaveConfigTyp
* protected against un-initialized filter and polarity values.
*/
void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) {
- uint32_t tmpccmr1 = 0U;
- uint32_t tmpccer = 0U;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
/* Disable the Channel 1: Reset the CC1E Bit */
TIMx->CCER &= ~TIM_CCER_CC1E;
@@ -4545,19 +6313,19 @@ void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_
/**
* @brief Configure the Polarity and Filter for TI1.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity : The Input Polarity.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) {
- uint32_t tmpccmr1 = 0U;
- uint32_t tmpccer = 0U;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
/* Disable the Channel 1: Reset the CC1E Bit */
tmpccer = TIMx->CCER;
@@ -4579,18 +6347,18 @@ static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity,
/**
* @brief Configure the TI2 as Input.
- * @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity : The Input Polarity.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICSelection : specifies the input to be used.
+ * @param TIM_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
- * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
@@ -4598,8 +6366,8 @@ static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity,
* protected against un-initialized filter and polarity values.
*/
static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) {
- uint32_t tmpccmr1 = 0U;
- uint32_t tmpccer = 0U;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
/* Disable the Channel 2: Reset the CC2E Bit */
TIMx->CCER &= ~TIM_CCER_CC2E;
@@ -4625,19 +6393,19 @@ static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
/**
* @brief Configure the Polarity and Filter for TI2.
- * @param TIMx to select the TIM peripheral.
- * @param TIM_ICPolarity : The Input Polarity.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
* @arg TIM_ICPOLARITY_BOTHEDGE
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) {
- uint32_t tmpccmr1 = 0U;
- uint32_t tmpccer = 0U;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
/* Disable the Channel 2: Reset the CC2E Bit */
TIMx->CCER &= ~TIM_CCER_CC2E;
@@ -4659,17 +6427,17 @@ static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity,
/**
* @brief Configure the TI3 as Input.
- * @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity : The Input Polarity.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
- * @param TIM_ICSelection : specifies the input to be used.
+ * @param TIM_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
- * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
@@ -4677,8 +6445,8 @@ static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity,
* protected against un-initialized filter and polarity values.
*/
static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) {
- uint32_t tmpccmr2 = 0U;
- uint32_t tmpccer = 0U;
+ uint32_t tmpccmr2;
+ uint32_t tmpccer;
/* Disable the Channel 3: Reset the CC3E Bit */
TIMx->CCER &= ~TIM_CCER_CC3E;
@@ -4695,7 +6463,7 @@ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
/* Select the Polarity and set the CC3E Bit */
tmpccer &= ~(TIM_CCER_CC3P);
- tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P));
+ tmpccer |= ((TIM_ICPolarity << 8U) & TIM_CCER_CC3P);
/* Write to TIMx CCMR2 and CCER registers */
TIMx->CCMR2 = tmpccmr2;
@@ -4705,16 +6473,16 @@ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
/**
* @brief Configure the TI4 as Input.
* @param TIMx to select the TIM peripheral
- * @param TIM_ICPolarity : The Input Polarity.
+ * @param TIM_ICPolarity The Input Polarity.
* This parameter can be one of the following values:
* @arg TIM_ICPOLARITY_RISING
* @arg TIM_ICPOLARITY_FALLING
- * @param TIM_ICSelection : specifies the input to be used.
+ * @param TIM_ICSelection specifies the input to be used.
* This parameter can be one of the following values:
- * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
* @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
- * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
- * @param TIM_ICFilter : Specifies the Input Capture Filter.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
* (on channel1 path) is used as the input signal. Therefore CCMR2 must be
@@ -4722,8 +6490,8 @@ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
* @retval None
*/
static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter) {
- uint32_t tmpccmr2 = 0U;
- uint32_t tmpccer = 0U;
+ uint32_t tmpccmr2;
+ uint32_t tmpccer;
/* Disable the Channel 4: Reset the CC4E Bit */
TIMx->CCER &= ~TIM_CCER_CC4E;
@@ -4739,7 +6507,7 @@ static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
/* Select the Polarity and set the CC4E Bit */
- tmpccer &= ~TIM_CCER_CC4P;
+ tmpccer &= ~(TIM_CCER_CC4P);
tmpccer |= ((TIM_ICPolarity << 12U) & TIM_CCER_CC4P);
/* Write to TIMx CCMR2 and CCER registers */
@@ -4747,25 +6515,52 @@ static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
TIMx->CCER = tmpccer;
}
+/**
+ * @brief Selects the Input Trigger source
+ * @param TIMx to select the TIM peripheral
+ * @param InputTriggerSource The Input Trigger source.
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal Trigger 0
+ * @arg TIM_TS_ITR1: Internal Trigger 1
+ * @arg TIM_TS_ITR2: Internal Trigger 2
+ * @arg TIM_TS_ITR3: Internal Trigger 3
+ * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
+ * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
+ * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
+ * @arg TIM_TS_ETRF: External Trigger input
+ * @retval None
+ */
+static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) {
+ uint32_t tmpsmcr;
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+ /* Reset the TS Bits */
+ tmpsmcr &= ~TIM_SMCR_TS;
+ /* Set the Input Trigger source and the slave mode*/
+ tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
/**
* @brief Configures the TIMx External Trigger (ETR).
- * @param TIMx to select the TIM peripheral
- * @param TIM_ExtTRGPrescaler : The external Trigger Prescaler.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ExtTRGPrescaler The external Trigger Prescaler.
* This parameter can be one of the following values:
* @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
* @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
* @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
* @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
- * @param TIM_ExtTRGPolarity : The external Trigger Polarity.
+ * @param TIM_ExtTRGPolarity The external Trigger Polarity.
* This parameter can be one of the following values:
* @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
* @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
- * @param ExtTRGFilter : External Trigger Filter.
+ * @param ExtTRGFilter External Trigger Filter.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
-static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) {
- uint32_t tmpsmcr = 0U;
+void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) {
+ uint32_t tmpsmcr;
tmpsmcr = TIMx->SMCR;
@@ -4781,33 +6576,58 @@ static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, u
/**
* @brief Enables or disables the TIM Capture Compare Channel x.
- * @param TIMx to select the TIM peripheral
- * @param Channel : specifies the TIM Channel
+ * @param TIMx to select the TIM peripheral
+ * @param Channel specifies the TIM Channel
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1
* @arg TIM_CHANNEL_2: TIM Channel 2
* @arg TIM_CHANNEL_3: TIM Channel 3
* @arg TIM_CHANNEL_4: TIM Channel 4
- * @param ChannelState : specifies the TIM Channel CCxE bit new state.
- * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_Disable.
+ * @param ChannelState specifies the TIM Channel CCxE bit new state.
+ * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
* @retval None
*/
void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) {
- uint32_t tmp = 0U;
+ uint32_t tmp;
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(TIMx));
assert_param(IS_TIM_CHANNELS(Channel));
- tmp = TIM_CCER_CC1E << Channel;
+ tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
/* Reset the CCxE Bit */
TIMx->CCER &= ~tmp;
/* Set or reset the CCxE Bit */
- TIMx->CCER |= (uint32_t)(ChannelState << Channel);
+ TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
}
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Reset interrupt callbacks to the legacy weak callbacks.
+ * @param htim pointer to a TIM_HandleTypeDef structure that contains
+ * the configuration information for TIM module.
+ * @retval None
+ */
+void TIM_ResetCallback(TIM_HandleTypeDef *htim) {
+ /* Reset the TIM callback to the legacy weak callbacks */
+ htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; /* Legacy weak PeriodElapsedCallback */
+ htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; /* Legacy weak PeriodElapsedHalfCpltCallback */
+ htim->TriggerCallback = HAL_TIM_TriggerCallback; /* Legacy weak TriggerCallback */
+ htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; /* Legacy weak TriggerHalfCpltCallback */
+ htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; /* Legacy weak IC_CaptureCallback */
+ htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; /* Legacy weak IC_CaptureHalfCpltCallback */
+ htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; /* Legacy weak OC_DelayElapsedCallback */
+ htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; /* Legacy weak PWM_PulseFinishedCallback */
+ htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; /* Legacy weak PWM_PulseFinishedHalfCpltCallback */
+ htim->ErrorCallback = HAL_TIM_ErrorCallback; /* Legacy weak ErrorCallback */
+ htim->CommutationCallback = HAL_TIMEx_CommutCallback; /* Legacy weak CommutationCallback */
+ htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; /* Legacy weak CommutationHalfCpltCallback */
+ htim->BreakCallback = HAL_TIMEx_BreakCallback; /* Legacy weak BreakCallback */
+}
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
/**
* @}
*/
diff --git a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c
index e1530203..9d6123bf 100644
--- a/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c
+++ b/source/Core/BSP/Miniware/Vendor/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c
@@ -7,7 +7,7 @@
* functionalities of the Timer Extended peripheral:
* + Time Hall Sensor Interface Initialization
* + Time Hall Sensor Interface Start
- * + Time Complementary signal bread and dead time configuration
+ * + Time Complementary signal break and dead time configuration
* + Time Master and Slave synchronization configuration
* + Timer remapping capabilities configuration
@verbatim
@@ -30,10 +30,7 @@
==============================================================================
[..]
(#) Initialize the TIM low level resources by implementing the following functions
- depending from feature used :
- (++) Complementary Output Compare : HAL_TIM_OC_MspInit()
- (++) Complementary PWM generation : HAL_TIM_PWM_MspInit()
- (++) Complementary One-pulse mode output : HAL_TIM_OnePulse_MspInit()
+ depending on the selected feature:
(++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit()
(#) Initialize the TIM low level resources :
@@ -50,11 +47,11 @@
(#) Configure the TIM in the desired functioning mode using one of the
initialization function of this driver:
- (++) HAL_TIMEx_HallSensor_Init and HAL_TIMEx_ConfigCommutationEvent: to use the
- Timer Hall Sensor Interface and the commutation event with the corresponding
- Interrupt and DMA request if needed (Note that One Timer is used to interface
- with the Hall sensor Interface and another Timer should be used to use
- the commutation event).
+ (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the
+ Timer Hall Sensor Interface and the commutation event with the corresponding
+ Interrupt and DMA request if needed (Note that One Timer is used to interface
+ with the Hall sensor Interface and another Timer should be used to use
+ the commutation event).
(#) Activate the TIM peripheral using one of the start functions:
(++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OCN_Start_IT()
@@ -62,37 +59,20 @@
(++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
(++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT().
-
@endverbatim
******************************************************************************
* @attention
*
- * © COPYRIGHT(c) 2016 STMicroelectronics
+ * © Copyright (c) 2016 STMicroelectronics.
+ * All rights reserved.
*
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
-*/
+ */
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
@@ -110,31 +90,21 @@
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
-/* Private macro -------------------------------------------------------------*/
+/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
-
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
- * @{
- */
+static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma);
static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState);
-/**
- * @}
- */
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-/* Exported functions ---------------------------------------------------------*/
-
-/** @defgroup TIMEx_Exported_Functions TIMEx Exported Functions
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions
* @{
*/
-/** @defgroup TIMEx_Exported_Functions_Group1 Timer Hall Sensor functions
- * @brief Timer Hall Sensor functions
- *
+/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
+ * @brief Timer Hall Sensor functions
+ *
@verbatim
==============================================================================
##### Timer Hall Sensor functions #####
@@ -154,9 +124,12 @@ static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Cha
* @{
*/
/**
- * @brief Initializes the TIM Hall Sensor Interface and create the associated handle.
- * @param htim : TIM Encoder Interface handle
- * @param sConfig : TIM Hall Sensor configuration structure
+ * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle.
+ * @note When the timer instance is initialized in Hall Sensor Interface mode,
+ * timer channels 1 and channel 2 are reserved and cannot be used for
+ * other purpose.
+ * @param htim TIM Hall Sensor Interface handle
+ * @param sConfig TIM Hall Sensor configuration structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig) {
@@ -167,7 +140,8 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSen
return HAL_ERROR;
}
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
@@ -179,8 +153,19 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSen
/* Allocate lock resource and initialize it */
htim->Lock = HAL_UNLOCKED;
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy week callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->HallSensor_MspInitCallback == NULL) {
+ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->HallSensor_MspInitCallback(htim);
+#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_TIMEx_HallSensor_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
}
/* Set the TIM state */
@@ -224,6 +209,15 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSen
htim->Instance->CR2 &= ~TIM_CR2_MMS;
htim->Instance->CR2 |= TIM_TRGO_OC2REF;
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
/* Initialize the TIM state*/
htim->State = HAL_TIM_STATE_READY;
@@ -232,7 +226,7 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSen
/**
* @brief DeInitializes the TIM Hall Sensor interface
- * @param htim : TIM Hall Sensor handle
+ * @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) {
@@ -244,8 +238,25 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) {
/* Disable the TIM Peripheral Clock */
__HAL_TIM_DISABLE(htim);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->HallSensor_MspDeInitCallback == NULL) {
+ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->HallSensor_MspDeInitCallback(htim);
+#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
HAL_TIMEx_HallSensor_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
/* Change TIM state */
htim->State = HAL_TIM_STATE_RESET;
@@ -258,45 +269,72 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) {
/**
* @brief Initializes the TIM Hall Sensor MSP.
- * @param htim : TIM handle
+ * @param htim TIM Hall Sensor Interface handle
* @retval None
*/
__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes TIM Hall Sensor MSP.
- * @param htim : TIM handle
+ * @param htim TIM Hall Sensor Interface handle
* @retval None
*/
__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Starts the TIM Hall Sensor Interface.
- * @param htim : TIM Hall Sensor handle
+ * @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
/* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -304,42 +342,73 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) {
/**
* @brief Stops the TIM Hall sensor Interface.
- * @param htim : TIM Hall Sensor handle
+ * @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) {
/* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
- /* Disable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ /* Disable the Input Capture channels 1, 2 and 3
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Hall Sensor Interface in interrupt mode.
- * @param htim : TIM Hall Sensor handle
+ * @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) {
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
/* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
/* Enable the capture compare Interrupts 1 event */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
/* Enable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -347,15 +416,15 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) {
/**
* @brief Stops the TIM Hall Sensor Interface in interrupt mode.
- * @param htim : TIM handle
+ * @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) {
/* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts event */
@@ -364,47 +433,72 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) {
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
/**
* @brief Starts the TIM Hall Sensor Interface in DMA mode.
- * @param htim : TIM Hall Sensor handle
- * @param pData : The destination Buffer address.
- * @param Length : The length of data to be transferred from TIM peripheral to memory.
+ * @param htim TIM Hall Sensor Interface handle
+ * @param pData The destination Buffer address.
+ * @param Length The length of data to be transferred from TIM peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) {
- /* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ /* Check the parameters */
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel state */
+ if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if (((uint32_t)pData == 0U) && (Length > 0U)) {
+ } else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) {
+ if ((pData == NULL) && (Length > 0U)) {
return HAL_ERROR;
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
}
+ } else {
+ return HAL_ERROR;
}
+
/* Enable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
- /* Set the DMA Input Capture 1 Callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ /* Set the DMA Input Capture 1 Callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
/* Enable the DMA channel for Capture 1*/
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the capture compare 1 Interrupt */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -412,23 +506,29 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32
/**
* @brief Stops the TIM Hall Sensor Interface in DMA mode.
- * @param htim : TIM handle
+ * @param htim TIM Hall Sensor Interface handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) {
/* Check the parameters */
- assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
/* Disable the Input Capture channel 1
- (in the Hall Sensor Interface the 3 possible channels that are used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
+ (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
/* Disable the capture compare Interrupts 1 event */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
@@ -437,11 +537,9 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) {
* @}
*/
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-
-/** @defgroup TIMEx_Exported_Functions_Group2 Timer Complementary Output Compare functions
- * @brief Timer Complementary Output Compare functions
- *
+/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
+ * @brief Timer Complementary Output Compare functions
+ *
@verbatim
==============================================================================
##### Timer Complementary Output Compare functions #####
@@ -462,8 +560,8 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) {
/**
* @brief Starts the TIM Output Compare signal generation on the complementary
* output.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -471,17 +569,34 @@ HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) {
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
- /* Enable the Main Ouput */
+ /* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -490,8 +605,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
/**
* @brief Stops the TIM Output Compare signal generation on the complementary
* output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -505,12 +620,15 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
/* Disable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
@@ -518,8 +636,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
/**
* @brief Starts the TIM Output Compare signal generation in interrupt mode
* on the complementary output.
- * @param htim : TIM OC handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM OC handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -527,24 +645,37 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
switch (Channel) {
case TIM_CHANNEL_1: {
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Enable the TIM Output Compare interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
default:
break;
@@ -556,11 +687,18 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chann
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
- /* Enable the Main Ouput */
+ /* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -569,8 +707,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chann
/**
* @brief Stops the TIM Output Compare signal generation in interrupt mode
* on the complementary output.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -578,8 +716,7 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chann
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
- uint32_t tmpccer = 0U;
-
+ uint32_t tmpccer;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
@@ -587,17 +724,20 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channe
case TIM_CHANNEL_1: {
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Output Compare interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
default:
break;
@@ -608,16 +748,19 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channe
/* Disable the TIM Break interrupt (only if no more channel is active) */
tmpccer = htim->Instance->CCER;
- if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) {
+ if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) {
__HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
}
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
@@ -625,71 +768,89 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channe
/**
* @brief Starts the TIM Output Compare signal generation in DMA mode
* on the complementary output.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to TIM peripheral
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ /* Set the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if (((uint32_t)pData == 0U) && (Length > 0U)) {
+ } else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
return HAL_ERROR;
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
+ } else {
+ return HAL_ERROR;
}
+
switch (Channel) {
case TIM_CHANNEL_1: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Output Compare DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ break;
+ }
default:
break;
@@ -698,11 +859,18 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Chan
/* Enable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
- /* Enable the Main Ouput */
+ /* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -711,8 +879,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Chan
/**
* @brief Stops the TIM Output Compare signal generation in DMA mode
* on the complementary output.
- * @param htim : TIM Output Compare handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -727,17 +895,23 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann
case TIM_CHANNEL_1: {
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Output Compare DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
default:
break;
@@ -746,14 +920,14 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann
/* Disable the Capture compare channel N */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
@@ -763,9 +937,9 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann
* @}
*/
-/** @defgroup TIMEx_Exported_Functions_Group3 Timer Complementary PWM functions
- * @brief Timer Complementary PWM functions
- *
+/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
+ * @brief Timer Complementary PWM functions
+ *
@verbatim
==============================================================================
##### Timer Complementary PWM functions #####
@@ -795,8 +969,8 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann
/**
* @brief Starts the PWM signal generation on the complementary output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -804,17 +978,34 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
- /* Enable the Main Ouput */
+ /* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -822,8 +1013,8 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel
/**
* @brief Stops the PWM signal generation on the complementary output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -837,12 +1028,15 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
/* Disable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
@@ -850,8 +1044,8 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
/**
* @brief Starts the PWM signal generation in interrupt mode on the
* complementary output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -859,24 +1053,37 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
+ /* Check the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
switch (Channel) {
case TIM_CHANNEL_1: {
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Enable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
default:
break;
@@ -888,11 +1095,18 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chan
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
- /* Enable the Main Ouput */
+ /* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -901,8 +1115,8 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chan
/**
* @brief Stops the PWM signal generation in interrupt mode on the
* complementary output.
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -910,7 +1124,7 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Chan
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) {
- uint32_t tmpccer = 0U;
+ uint32_t tmpccer;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
@@ -919,17 +1133,20 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chann
case TIM_CHANNEL_1: {
/* Disable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Capture/Compare 3 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
- } break;
+ break;
+ }
default:
break;
@@ -940,16 +1157,19 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chann
/* Disable the TIM Break interrupt (only if no more channel is active) */
tmpccer = htim->Instance->CCER;
- if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) {
+ if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) {
__HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
}
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
@@ -957,71 +1177,89 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chann
/**
* @brief Starts the TIM PWM signal generation in DMA mode on the
* complementary output
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be enabled
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @arg TIM_CHANNEL_3: TIM Channel 3 selected
- * @param pData : The source Buffer address.
- * @param Length : The length of data to be transferred from memory to TIM peripheral
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) {
+ uint32_t tmpsmcr;
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
- if ((htim->State == HAL_TIM_STATE_BUSY)) {
+ /* Set the TIM complementary channel state */
+ if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) {
return HAL_BUSY;
- } else if ((htim->State == HAL_TIM_STATE_READY)) {
- if (((uint32_t)pData == 0U) && (Length > 0U)) {
+ } else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) {
+ if ((pData == NULL) && (Length > 0U)) {
return HAL_ERROR;
} else {
- htim->State = HAL_TIM_STATE_BUSY;
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
}
+ } else {
+ return HAL_ERROR;
}
+
switch (Channel) {
case TIM_CHANNEL_1: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError;
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ break;
+ }
case TIM_CHANNEL_2: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ break;
+ }
case TIM_CHANNEL_3: {
- /* Set the DMA Period elapsed callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
/* Set the DMA error callback */
- htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError;
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN;
/* Enable the DMA channel */
- HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length);
-
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK) {
+ /* Return error status */
+ return HAL_ERROR;
+ }
/* Enable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ break;
+ }
default:
break;
@@ -1030,11 +1268,18 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Cha
/* Enable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
- /* Enable the Main Ouput */
+ /* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
- /* Enable the Peripheral */
- __HAL_TIM_ENABLE(htim);
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) {
+ __HAL_TIM_ENABLE(htim);
+ }
+ } else {
+ __HAL_TIM_ENABLE(htim);
+ }
/* Return function status */
return HAL_OK;
@@ -1043,8 +1288,8 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Cha
/**
* @brief Stops the TIM PWM signal generation in DMA mode on the complementary
* output
- * @param htim : TIM handle
- * @param Channel : TIM Channel to be disabled
+ * @param htim TIM handle
+ * @param Channel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
@@ -1059,17 +1304,23 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan
case TIM_CHANNEL_1: {
/* Disable the TIM Capture/Compare 1 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
case TIM_CHANNEL_2: {
/* Disable the TIM Capture/Compare 2 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
case TIM_CHANNEL_3: {
/* Disable the TIM Capture/Compare 3 DMA request */
__HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
- } break;
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
default:
break;
@@ -1078,14 +1329,14 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan
/* Disable the complementary PWM output */
TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
- /* Change the htim state */
- htim->State = HAL_TIM_STATE_READY;
+ /* Set the TIM complementary channel state */
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
/* Return function status */
return HAL_OK;
@@ -1095,9 +1346,9 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan
* @}
*/
-/** @defgroup TIMEx_Exported_Functions_Group4 Timer Complementary One Pulse functions
- * @brief Timer Complementary One Pulse functions
- *
+/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
+ * @brief Timer Complementary One Pulse functions
+ *
@verbatim
==============================================================================
##### Timer Complementary One Pulse functions #####
@@ -1114,23 +1365,37 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chan
*/
/**
- * @brief Starts the TIM One Pulse signal generation on the complemetary
+ * @brief Starts the TIM One Pulse signal generation on the complementary
* output.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channel to be enabled
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
+ HAL_TIM_ChannelStateTypeDef input_channel_state = TIM_CHANNEL_STATE_GET(htim, input_channel);
+ HAL_TIM_ChannelStateTypeDef output_channel_state = TIM_CHANNEL_N_STATE_GET(htim, OutputChannel);
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
- /* Enable the complementary One Pulse output */
- TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
+ /* Check the TIM channels state */
+ if ((output_channel_state != HAL_TIM_CHANNEL_STATE_READY) || (input_channel_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
- /* Enable the Main Ouput */
+ /* Set the TIM channels state */
+ TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the complementary One Pulse output channel and the Input Capture channel */
+ TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);
+
+ /* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Return function status */
@@ -1140,27 +1405,33 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t Ou
/**
* @brief Stops the TIM One Pulse signal generation on the complementary
* output.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channel to be disabled
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
- /* Disable the complementary One Pulse output */
+ /* Disable the complementary One Pulse output channel and the Input Capture channel */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channels state */
+ TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
@@ -1168,27 +1439,41 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t Out
/**
* @brief Starts the TIM One Pulse signal generation in interrupt mode on the
* complementary channel.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channel to be enabled
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channel to be enabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
+ HAL_TIM_ChannelStateTypeDef input_channel_state = TIM_CHANNEL_STATE_GET(htim, input_channel);
+ HAL_TIM_ChannelStateTypeDef output_channel_state = TIM_CHANNEL_N_STATE_GET(htim, OutputChannel);
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
+ /* Check the TIM channels state */
+ if ((output_channel_state != HAL_TIM_CHANNEL_STATE_READY) || (input_channel_state != HAL_TIM_CHANNEL_STATE_READY)) {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
/* Enable the TIM Capture/Compare 1 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
/* Enable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
- /* Enable the complementary One Pulse output */
+ /* Enable the complementary One Pulse output channel and the Input Capture channel */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE);
- /* Enable the Main Ouput */
+ /* Enable the Main Output */
__HAL_TIM_MOE_ENABLE(htim);
/* Return function status */
@@ -1198,14 +1483,16 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t
/**
* @brief Stops the TIM One Pulse signal generation in interrupt mode on the
* complementary channel.
- * @param htim : TIM One Pulse handle
- * @param OutputChannel : TIM Channel to be disabled
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel TIM Channel to be disabled
* This parameter can be one of the following values:
* @arg TIM_CHANNEL_1: TIM Channel 1 selected
* @arg TIM_CHANNEL_2: TIM Channel 2 selected
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) {
+ uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1;
+
/* Check the parameters */
assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
@@ -1215,15 +1502,20 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t
/* Disable the TIM Capture/Compare 2 interrupt */
__HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
- /* Disable the complementary One Pulse output */
+ /* Disable the complementary One Pulse output channel and the Input Capture channel */
TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE);
- /* Disable the Main Ouput */
+ /* Disable the Main Output */
__HAL_TIM_MOE_DISABLE(htim);
/* Disable the Peripheral */
__HAL_TIM_DISABLE(htim);
+ /* Set the TIM channels state */
+ TIM_CHANNEL_N_STATE_SET(htim, OutputChannel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, input_channel, HAL_TIM_CHANNEL_STATE_READY);
+
/* Return function status */
return HAL_OK;
}
@@ -1232,52 +1524,49 @@ HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t
* @}
*/
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
-/** @defgroup TIMEx_Exported_Functions_Group5 Peripheral Control functions
- * @brief Peripheral Control functions
- *
+/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
+ * @brief Peripheral Control functions
+ *
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This section provides functions allowing to:
- (+) Configure the commutation event in case of use of the Hall sensor interface.
+ (+) Configure the commutation event in case of use of the Hall sensor interface.
+ (+) Configure Output channels for OC and PWM mode.
+
(+) Configure Complementary channels, break features and dead time.
(+) Configure Master synchronization.
+ (+) Configure timer remapping capabilities.
@endverbatim
* @{
*/
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-
/**
* @brief Configure the TIM commutation event sequence.
- * @note: this function is mandatory to use the commutation event in order to
+ * @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
- * @param htim : TIM handle
- * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
+ * @param htim TIM handle
+ * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_NONE: No trigger is needed
- * @param CommutationSource : the Commutation Event source
+ * @param CommutationSource the Commutation Event source
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
/* Check the parameters */
assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
@@ -1296,6 +1585,12 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint
htim->Instance->CR2 &= ~TIM_CR2_CCUS;
htim->Instance->CR2 |= CommutationSource;
+ /* Disable Commutation Interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
+
+ /* Disable Commutation DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
+
__HAL_UNLOCK(htim);
return HAL_OK;
@@ -1303,27 +1598,27 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint
/**
* @brief Configure the TIM commutation event sequence with interrupt.
- * @note: this function is mandatory to use the commutation event in order to
+ * @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
- * @param htim : TIM handle
- * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
+ * @param htim TIM handle
+ * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_NONE: No trigger is needed
- * @param CommutationSource : the Commutation Event source
+ * @param CommutationSource the Commutation Event source
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
/* Check the parameters */
assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
@@ -1342,7 +1637,10 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, u
htim->Instance->CR2 &= ~TIM_CR2_CCUS;
htim->Instance->CR2 |= CommutationSource;
- /* Enable the Commutation Interrupt Request */
+ /* Disable Commutation DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
+
+ /* Enable the Commutation Interrupt */
__HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);
__HAL_UNLOCK(htim);
@@ -1352,28 +1650,28 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, u
/**
* @brief Configure the TIM commutation event sequence with DMA.
- * @note: this function is mandatory to use the commutation event in order to
+ * @note This function is mandatory to use the commutation event in order to
* update the configuration at each commutation detection on the TRGI input of the Timer,
* the typical use of this feature is with the use of another Timer(interface Timer)
* configured in Hall sensor interface, this interface Timer will generate the
* commutation at its TRGO output (connected to Timer used in this function) each time
* the TI1 of the Interface Timer detect a commutation at its input TI1.
- * @note: The user should configure the DMA in his own software, in This function only the COMDE bit is set
- * @param htim : TIM handle
- * @param InputTrigger : the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
+ * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set
+ * @param htim TIM handle
+ * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
* This parameter can be one of the following values:
* @arg TIM_TS_ITR0: Internal trigger 0 selected
* @arg TIM_TS_ITR1: Internal trigger 1 selected
* @arg TIM_TS_ITR2: Internal trigger 2 selected
* @arg TIM_TS_ITR3: Internal trigger 3 selected
* @arg TIM_TS_NONE: No trigger is needed
- * @param CommutationSource : the Commutation Event source
+ * @param CommutationSource the Commutation Event source
* This parameter can be one of the following values:
* @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
* @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit
* @retval HAL status
*/
-HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
+HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) {
/* Check the parameters */
assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
@@ -1394,10 +1692,14 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim,
/* Enable the Commutation DMA Request */
/* Set the DMA Commutation Callback */
- htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
/* Set the DMA error callback */
htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
+ /* Disable Commutation Interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
+
/* Enable the Commutation DMA Request */
__HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);
@@ -1407,14 +1709,73 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim,
}
/**
- * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State
- * and the AOE(automatic output enable).
- * @param htim : TIM handle
- * @param sBreakDeadTimeConfig : pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
+ * @brief Configures the TIM in master mode.
+ * @param htim TIM handle.
+ * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that
+ * contains the selected trigger output (TRGO) and the Master/Slave
+ * mode.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef *sMasterConfig) {
+ uint32_t tmpcr2;
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
+ assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
+
+ /* Check input state */
+ __HAL_LOCK(htim);
+
+ /* Change the handler state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = htim->Instance->CR2;
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = htim->Instance->SMCR;
+
+ /* Reset the MMS Bits */
+ tmpcr2 &= ~TIM_CR2_MMS;
+ /* Select the TRGO source */
+ tmpcr2 |= sMasterConfig->MasterOutputTrigger;
+
+ /* Update TIMx CR2 */
+ htim->Instance->CR2 = tmpcr2;
+
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) {
+ /* Reset the MSM Bit */
+ tmpsmcr &= ~TIM_SMCR_MSM;
+ /* Set master mode */
+ tmpsmcr |= sMasterConfig->MasterSlaveMode;
+
+ /* Update TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+ }
+
+ /* Change the htim state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State
+ * and the AOE(automatic output enable).
+ * @param htim TIM handle
+ * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
* contains the BDTR Register configuration information for the TIM peripheral.
+ * @note Interrupts can be generated when an active level is detected on the
+ * break input, the break 2 input or the system break input. Break
+ * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig) {
+ /* Keep this variable initialized to 0 as it is used to configure BDTR register */
uint32_t tmpbdtr = 0U;
/* Check the parameters */
@@ -1427,7 +1788,7 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_Bre
assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));
- /* Process Locked */
+ /* Check input state */
__HAL_LOCK(htim);
/* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
@@ -1441,7 +1802,6 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_Bre
MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity);
MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput);
- MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, sBreakDeadTimeConfig->AutomaticOutput);
/* Set TIMx_BDTR */
htim->Instance->BDTR = tmpbdtr;
@@ -1451,41 +1811,17 @@ HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, TIM_Bre
return HAL_OK;
}
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
/**
- * @brief Configures the TIM in master mode.
- * @param htim : TIM handle.
- * @param sMasterConfig : pointer to a TIM_MasterConfigTypeDef structure that
- * contains the selected trigger output (TRGO) and the Master/Slave
- * mode.
+ * @brief Configures the TIMx Remapping input capabilities.
+ * @param htim TIM handle.
+ * @param Remap specifies the TIM remapping source.
+ *
* @retval HAL status
*/
-HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef *sMasterConfig) {
- /* Check the parameters */
- assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance));
- assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
- assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
-
- __HAL_LOCK(htim);
-
- htim->State = HAL_TIM_STATE_BUSY;
-
- /* Reset the MMS Bits */
- htim->Instance->CR2 &= ~TIM_CR2_MMS;
- /* Select the TRGO source */
- htim->Instance->CR2 |= sMasterConfig->MasterOutputTrigger;
-
- /* Reset the MSM Bit */
- htim->Instance->SMCR &= ~TIM_SMCR_MSM;
- /* Set or Reset the MSM Bit */
- htim->Instance->SMCR |= sMasterConfig->MasterSlaveMode;
-
- htim->State = HAL_TIM_STATE_READY;
-
- __HAL_UNLOCK(htim);
+HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+ UNUSED(Remap);
return HAL_OK;
}
@@ -1494,15 +1830,15 @@ HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
* @}
*/
-/** @defgroup TIMEx_Exported_Functions_Group6 Extension Callbacks functions
- * @brief Extension Callbacks functions
- *
+/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
+ * @brief Extended Callbacks functions
+ *
@verbatim
==============================================================================
- ##### Extension Callbacks functions #####
+ ##### Extended Callbacks functions #####
==============================================================================
[..]
- This section provides Extension TIM callback functions:
+ This section provides Extended TIM callback functions:
(+) Timer Commutation callback
(+) Timer Break callback
@@ -1511,59 +1847,58 @@ HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
*/
/**
- * @brief Hall commutation changed callback in non blocking mode
- * @param htim : TIM handle
+ * @brief Hall commutation changed callback in non-blocking mode
+ * @param htim TIM handle
* @retval None
*/
-__weak void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim) {
+__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
- the HAL_TIMEx_CommutationCallback could be implemented in the user file
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIMEx_CommutCallback could be implemented in the user file
+ */
+}
+/**
+ * @brief Hall commutation changed half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim) {
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file
*/
}
/**
- * @brief Hall Break detection callback in non blocking mode
- * @param htim : TIM handle
+ * @brief Hall Break detection callback in non-blocking mode
+ * @param htim TIM handle
* @retval None
*/
__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) {
/* Prevent unused argument(s) compilation warning */
UNUSED(htim);
- /* NOTE : This function Should not be modified, when the callback is needed,
+
+ /* NOTE : This function should not be modified, when the callback is needed,
the HAL_TIMEx_BreakCallback could be implemented in the user file
*/
}
-
-/**
- * @brief TIM DMA Commutation callback.
- * @param hdma : pointer to DMA handle.
- * @retval None
- */
-void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) {
- TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
- htim->State = HAL_TIM_STATE_READY;
-
- HAL_TIMEx_CommutationCallback(htim);
-}
-
/**
* @}
*/
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-
-/** @defgroup TIMEx_Exported_Functions_Group7 Extension Peripheral State functions
- * @brief Extension Peripheral State functions
- *
+/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
+ * @brief Extended Peripheral State functions
+ *
@verbatim
==============================================================================
- ##### Extension Peripheral State functions #####
+ ##### Extended Peripheral State functions #####
==============================================================================
[..]
- This subsection permit to get in run-time the status of the peripheral
+ This subsection permits to get in run-time the status of the peripheral
and the data flow.
@endverbatim
@@ -1571,61 +1906,183 @@ void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) {
*/
/**
- * @brief Return the TIM Hall Sensor interface state
- * @param htim : TIM Hall Sensor handle
+ * @brief Return the TIM Hall Sensor interface handle state.
+ * @param htim TIM Hall Sensor handle
* @retval HAL state
*/
HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim) { return htim->State; }
+/**
+ * @brief Return actual state of the TIM complementary channel.
+ * @param htim TIM handle
+ * @param ChannelN TIM Complementary channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @retval TIM Complementary channel state
+ */
+HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim, uint32_t ChannelN) {
+ HAL_TIM_ChannelStateTypeDef channel_state;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN));
+
+ channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN);
+
+ return channel_state;
+}
/**
* @}
*/
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
/**
* @}
*/
-#if defined(STM32F100xB) || defined(STM32F100xE) || defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || defined(STM32F105xC) || defined(STM32F107xC)
-
-/** @addtogroup TIMEx_Private_Functions
+/* Private functions ---------------------------------------------------------*/
+/** @defgroup TIMEx_Private_Functions TIMEx Private Functions
* @{
*/
+/**
+ * @brief TIM DMA Commutation callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Change the htim state */
+ htim->State = HAL_TIM_STATE_READY;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->CommutationCallback(htim);
+#else
+ HAL_TIMEx_CommutCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Commutation half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Change the htim state */
+ htim->State = HAL_TIM_STATE_READY;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->CommutationHalfCpltCallback(htim);
+#else
+ HAL_TIMEx_CommutHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Delay Pulse complete callback (complementary channel).
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+
+ if (hdma->Init.Mode == DMA_NORMAL) {
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA error callback (complementary channel)
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma) {
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ } else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ } else {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->ErrorCallback(htim);
+#else
+ HAL_TIM_ErrorCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
/**
* @brief Enables or disables the TIM Capture Compare Channel xN.
- * @param TIMx to select the TIM peripheral
- * @param Channel : specifies the TIM Channel
+ * @param TIMx to select the TIM peripheral
+ * @param Channel specifies the TIM Channel
* This parameter can be one of the following values:
- * @arg TIM_Channel_1: TIM Channel 1
- * @arg TIM_Channel_2: TIM Channel 2
- * @arg TIM_Channel_3: TIM Channel 3
- * @param ChannelNState : specifies the TIM Channel CCxNE bit new state.
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @param ChannelNState specifies the TIM Channel CCxNE bit new state.
* This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
* @retval None
*/
static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState) {
- uint32_t tmp = 0U;
+ uint32_t tmp;
- tmp = TIM_CCER_CC1NE << Channel;
+ tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
/* Reset the CCxNE Bit */
TIMx->CCER &= ~tmp;
/* Set or reset the CCxNE Bit */
- TIMx->CCER |= (uint32_t)(ChannelNState << Channel);
+ TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
}
-
/**
* @}
*/
-#endif /* defined(STM32F100xB) || defined(STM32F100xE) || */
- /* defined(STM32F103x6) || defined(STM32F103xB) || defined(STM32F103xE) || defined(STM32F103xG) || */
- /* defined(STM32F105xC) || defined(STM32F107xC) */
-
#endif /* HAL_TIM_MODULE_ENABLED */
/**
* @}
diff --git a/source/Makefile b/source/Makefile
index 6ecd4881..bfdfeb83 100644
--- a/source/Makefile
+++ b/source/Makefile
@@ -535,6 +535,7 @@ check-style:
var=`clang-format "$$src" | diff "$$src" - | wc -l` ; \
if [ $$var -ne 0 ] ; then \
echo "$$src does not respect the coding style (diff: $$var lines)" ; \
+ clang-format "$$src" | diff "$$src" -; \
exit 1 ; \
fi ; \
done