Format BSP

This commit is contained in:
Ben V. Brown
2021-05-02 14:33:07 +10:00
parent 70c03ba771
commit 5fac16a14a

View File

@@ -11,258 +11,250 @@
#include "main.hpp" #include "main.hpp"
#include <IRQ.h> #include <IRQ.h>
volatile uint16_t PWMSafetyTimer = 0; volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 0; volatile uint8_t pendingPWM = 0;
uint16_t totalPWM = 255; uint16_t totalPWM = 255;
const uint16_t powerPWM = 255; const uint16_t powerPWM = 255;
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 }; history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
void resetWatchdog() { void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
HAL_IWDG_Refresh(&hiwdg);
}
#ifdef TEMP_NTC #ifdef TEMP_NTC
// Lookup table for the NTC // Lookup table for the NTC
// Stored as ADCReading,Temp in degC // Stored as ADCReading,Temp in degC
static const uint16_t NTCHandleLookup[] = { static const uint16_t NTCHandleLookup[] = {
// ADC Reading , Temp in C // ADC Reading , Temp in C
11292, 600, // 11292, 600, //
12782, 550, // 12782, 550, //
14380, 500, // 14380, 500, //
16061, 450, // 16061, 450, //
17793, 400, // 17793, 400, //
19541, 350, // 19541, 350, //
21261, 300, // 21261, 300, //
22915, 250, // 22915, 250, //
24465, 200, // 24465, 200, //
25882, 150, // 25882, 150, //
27146, 100, // 27146, 100, //
28249, 50, // 28249, 50, //
29189, 0, // 29189, 0, //
}; };
const int NTCHandleLookupItems = sizeof(NTCHandleLookup) const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t));
/ (2 * sizeof(uint16_t));
#endif #endif
// These are called by the HAL after the corresponding events from the system // These are called by the HAL after the corresponding events from the system
// timers. // timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed // Period has elapsed
if (htim->Instance == TIM1) { if (htim->Instance == TIM1) {
// STM uses this for internal functions as a counter for timeouts // STM uses this for internal functions as a counter for timeouts
HAL_IncTick(); HAL_IncTick();
} }
} }
uint16_t getHandleTemperature() { uint16_t getHandleTemperature() {
int32_t result = getADC(0); int32_t result = getADC(0);
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result);
result);
} }
uint16_t getTipInstantTemperature() { uint16_t getTipInstantTemperature() { return getADC(2); }
return getADC(2);
}
uint16_t getTipRawTemp(uint8_t refresh) { uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh) { if (refresh) {
uint16_t lastSample = getTipInstantTemperature(); uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample); rawTempFilter.update(lastSample);
return lastSample; return lastSample;
} else { } else {
return rawTempFilter.average(); return rawTempFilter.average();
} }
} }
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there // Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options, // Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467 // ideal term is 467
static uint8_t preFillneeded = 10; static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH]; static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0; static uint8_t index = 0;
if (preFillneeded) { if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1); samples[i] = getADC(1);
preFillneeded--; preFillneeded--;
} }
if (sample) { if (sample) {
samples[index] = getADC(1); samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH; index = (index + 1) % BATTFILTERDEPTH;
} }
uint32_t sum = 0; uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i]; sum += samples[i];
sum /= BATTFILTERDEPTH; sum /= BATTFILTERDEPTH;
if (divisor == 0) { if (divisor == 0) {
divisor = 1; divisor = 1;
} }
return sum * 4 / divisor; return sum * 4 / divisor;
} }
bool tryBetterPWM(uint8_t pwm) { bool tryBetterPWM(uint8_t pwm) {
// We dont need this for the MHP30 // We dont need this for the MHP30
return false; return false;
} }
void setTipPWM(uint8_t pulse) { void setTipPWM(uint8_t pulse) {
// We can just set the timer directly // We can just set the timer directly
htim3.Instance->CCR1 = pulse; htim3.Instance->CCR1 = pulse;
} }
void unstick_I2C() { void unstick_I2C() {
GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100; int timeout = 100;
int timeout_cnt = 0; int timeout_cnt = 0;
// 1. Clear PE bit. // 1. Clear PE bit.
hi2c1.Instance->CR1 &= ~(0x0001); hi2c1.Instance->CR1 &= ~(0x0001);
/**I2C1 GPIO Configuration /**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA PB7 ------> I2C1_SDA
*/ */
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin; GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = SDA_Pin; GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
// Move clock to release I2C // Move clock to release I2C
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
asm("nop"); asm("nop");
asm("nop"); asm("nop");
asm("nop"); asm("nop");
asm("nop"); asm("nop");
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
timeout_cnt++; timeout_cnt++;
if (timeout_cnt > timeout) if (timeout_cnt > timeout)
return; return;
} }
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin; GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SDA_Pin; GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
// 13. Set SWRST bit in I2Cx_CR1 register. // 13. Set SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 |= 0x8000; hi2c1.Instance->CR1 |= 0x8000;
asm("nop"); asm("nop");
// 14. Clear SWRST bit in I2Cx_CR1 register. // 14. Clear SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 &= ~0x8000; hi2c1.Instance->CR1 &= ~0x8000;
asm("nop"); asm("nop");
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
hi2c1.Instance->CR1 |= 0x0001; hi2c1.Instance->CR1 |= 0x0001;
// Call initialization function. // Call initialization function.
HAL_I2C_Init(&hi2c1); HAL_I2C_Init(&hi2c1);
} }
uint8_t getButtonA() { uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
1 : 0;
}
uint8_t getButtonB() {
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
1 : 0;
}
void BSPInit(void) { void BSPInit(void) {}
}
void reboot() { void reboot() { NVIC_SystemReset(); }
NVIC_SystemReset();
}
void delay_ms(uint16_t count) { void delay_ms(uint16_t count) { HAL_Delay(count); }
HAL_Delay(count);
}
void setPlatePullup(bool pullingUp) { void setPlatePullup(bool pullingUp) {
GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin; GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin;
GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Pull = GPIO_NOPULL;
if (pullingUp) { if (pullingUp) {
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET);
PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET); } else {
} else { // Hi-z
//Hi-z GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, }
PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET); HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct);
}
HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct);
} }
uint16_t tipSenseResistancex10Ohms = 0; uint16_t tipSenseResistancex10Ohms = 0;
bool isTipDisconnected() { bool isTipDisconnected() {
static bool lastTipDisconnectedState = true; static bool lastTipDisconnectedState = true;
static uint16_t adcReadingPD1Set = 0; static uint16_t adcReadingPD1Set = 0;
static TickType_t lastMeas = 0; static TickType_t lastMeas = 0;
// For the MHP30 we want to include a little extra logic in here // For the MHP30 we want to include a little extra logic in here
// As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip // As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip
// And likewise if its removed we want to clear that measurement // And likewise if its removed we want to clear that measurement
/* /*
* plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0; * plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0;
* */ * */
uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5; uint16_t tipDisconnectedThres = TipThermoModel::getTipMaxInC() - 5;
uint32_t tipTemp = TipThermoModel::getTipInC(); uint32_t tipTemp = TipThermoModel::getTipInC();
bool tipDisconnected = tipTemp > tipDisconnectedThres; bool tipDisconnected = tipTemp > tipDisconnectedThres;
if (tipDisconnected != lastTipDisconnectedState) { // We have to handle here that this ^ will trip while measuring the gain resistor
if (tipDisconnected) { if (xTaskGetTickCount() - lastMeas < (TICKS_100MS * 2 + (TICKS_100MS / 2))) {
// Tip is now disconnected tipDisconnected = false;
tipSenseResistancex10Ohms = 0; // zero out the resistance }
adcReadingPD1Set = 0;
lastMeas = xTaskGetTickCount();
setPlatePullup(true);
}
lastTipDisconnectedState = tipDisconnected;
}
if (!tipDisconnected) {
if (tipSenseResistancex10Ohms == 0) {
if (xTaskGetTickCount() - lastMeas > (TICKS_100MS / 2)) {
lastMeas = xTaskGetTickCount();
//We are sensing the resistance
if (adcReadingPD1Set == 0) {
//We will record the reading for PD1 being set
adcReadingPD1Set = getADC(3);
setPlatePullup(false);
} else {
//We have taken reading one
uint16_t adcReadingPD1Cleared = getADC(3);
tipSenseResistancex10Ohms = ((((int) adcReadingPD1Set
- (int) adcReadingPD1Cleared) * 10000)
/ ((int) adcReadingPD1Cleared
+ (65536 - (int) adcReadingPD1Set)));
}
}
return true; // we fake tip being disconnected until this is measured
}
}
return tipDisconnected; if (tipDisconnected != lastTipDisconnectedState) {
if (tipDisconnected) {
// Tip is now disconnected
tipSenseResistancex10Ohms = 0; // zero out the resistance
adcReadingPD1Set = 0;
lastMeas = 0;
}
lastTipDisconnectedState = tipDisconnected;
}
if (!tipDisconnected) {
if (tipSenseResistancex10Ohms == 0) {
if (lastMeas == 0) {
lastMeas = xTaskGetTickCount();
setPlatePullup(true);
} else if (xTaskGetTickCount() - lastMeas > (TICKS_100MS)) {
lastMeas = xTaskGetTickCount();
// We are sensing the resistance
if (adcReadingPD1Set == 0) {
// We will record the reading for PD1 being set
adcReadingPD1Set = getADC(3);
setPlatePullup(false);
} else {
// We have taken reading one
uint16_t adcReadingPD1Cleared = getADC(3);
uint32_t a = ((int)adcReadingPD1Set - (int)adcReadingPD1Cleared);
a *= 10000;
uint32_t b = ((int)adcReadingPD1Cleared + (32768 - (int)adcReadingPD1Set));
if (b) {
tipSenseResistancex10Ohms = a / b;
} else {
tipSenseResistancex10Ohms = adcReadingPD1Set = lastMeas = 0;
}
}
}
return true; // we fake tip being disconnected until this is measured
}
}
return tipDisconnected;
} }