mirror of
https://github.com/Ralim/IronOS.git
synced 2025-02-26 07:53:55 +00:00
Removing timer as wont work & replace with bit bang
Cant keep up with irq
This commit is contained in:
@@ -18,7 +18,9 @@ uint16_t totalPWM = 255;
|
||||
const uint16_t powerPWM = 255;
|
||||
|
||||
history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 };
|
||||
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); }
|
||||
void resetWatchdog() {
|
||||
HAL_IWDG_Refresh(&hiwdg);
|
||||
}
|
||||
|
||||
#ifdef TEMP_NTC
|
||||
// Lookup table for the NTC
|
||||
@@ -186,7 +188,8 @@ static const uint16_t NTCHandleLookup[] = {
|
||||
29104, 20, //
|
||||
29272, 10, //
|
||||
};
|
||||
const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t));
|
||||
const int NTCHandleLookupItems = sizeof(NTCHandleLookup)
|
||||
/ (2 * sizeof(uint16_t));
|
||||
#endif
|
||||
|
||||
// These are called by the HAL after the corresponding events from the system
|
||||
@@ -201,10 +204,13 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
||||
}
|
||||
uint16_t getHandleTemperature() {
|
||||
int32_t result = getADC(0);
|
||||
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result);
|
||||
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems,
|
||||
result);
|
||||
}
|
||||
|
||||
uint16_t getTipInstantTemperature() { return getADC(2); }
|
||||
uint16_t getTipInstantTemperature() {
|
||||
return getADC(2);
|
||||
}
|
||||
|
||||
uint16_t getTipRawTemp(uint8_t refresh) {
|
||||
if (refresh) {
|
||||
@@ -322,14 +328,26 @@ void unstick_I2C() {
|
||||
HAL_I2C_Init(&hi2c1);
|
||||
}
|
||||
|
||||
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
||||
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; }
|
||||
uint8_t getButtonA() {
|
||||
return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
|
||||
1 : 0;
|
||||
}
|
||||
uint8_t getButtonB() {
|
||||
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
|
||||
1 : 0;
|
||||
}
|
||||
|
||||
void BSPInit(void) {}
|
||||
void BSPInit(void) {
|
||||
WS2812::init();
|
||||
}
|
||||
|
||||
void reboot() { NVIC_SystemReset(); }
|
||||
void reboot() {
|
||||
NVIC_SystemReset();
|
||||
}
|
||||
|
||||
void delay_ms(uint16_t count) { HAL_Delay(count); }
|
||||
void delay_ms(uint16_t count) {
|
||||
HAL_Delay(count);
|
||||
}
|
||||
|
||||
void setPlatePullup(bool pullingUp) {
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
@@ -338,11 +356,13 @@ void setPlatePullup(bool pullingUp) {
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
if (pullingUp) {
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET);
|
||||
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port,
|
||||
PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET);
|
||||
} else {
|
||||
// Hi-z
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET);
|
||||
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port,
|
||||
PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET);
|
||||
}
|
||||
HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct);
|
||||
}
|
||||
@@ -361,7 +381,8 @@ bool isTipDisconnected() {
|
||||
|
||||
bool tipDisconnected = getADC(2) > 4090;
|
||||
// We have to handle here that this ^ will trip while measuring the gain resistor
|
||||
if (xTaskGetTickCount() - lastMeas < (TICKS_100MS * 2 + (TICKS_100MS / 2))) {
|
||||
if (xTaskGetTickCount() - lastMeas
|
||||
< (TICKS_100MS * 2 + (TICKS_100MS / 2))) {
|
||||
tipDisconnected = false;
|
||||
}
|
||||
|
||||
@@ -389,15 +410,19 @@ bool isTipDisconnected() {
|
||||
} else {
|
||||
// We have taken reading one
|
||||
uint16_t adcReadingPD1Cleared = getADC(3);
|
||||
uint32_t a = ((int)adcReadingPD1Set - (int)adcReadingPD1Cleared);
|
||||
uint32_t a = ((int) adcReadingPD1Set
|
||||
- (int) adcReadingPD1Cleared);
|
||||
a *= 10000;
|
||||
uint32_t b = ((int)adcReadingPD1Cleared + (32768 - (int)adcReadingPD1Set));
|
||||
uint32_t b = ((int) adcReadingPD1Cleared
|
||||
+ (32768 - (int) adcReadingPD1Set));
|
||||
if (b) {
|
||||
tipSenseResistancex10Ohms = a / b;
|
||||
} else {
|
||||
tipSenseResistancex10Ohms = adcReadingPD1Set = lastMeas = 0;
|
||||
tipSenseResistancex10Ohms = adcReadingPD1Set =
|
||||
lastMeas = 0;
|
||||
}
|
||||
if (tipSenseResistancex10Ohms > 1100 || tipSenseResistancex10Ohms < 900) {
|
||||
if (tipSenseResistancex10Ohms > 1100
|
||||
|| tipSenseResistancex10Ohms < 900) {
|
||||
tipSenseResistancex10Ohms = 0; // out of range
|
||||
adcReadingPD1Set = 0;
|
||||
lastMeas = 0;
|
||||
@@ -412,6 +437,27 @@ bool isTipDisconnected() {
|
||||
}
|
||||
|
||||
void setStatusLED(const enum StatusLED state) {
|
||||
WS2812::led_set_color(0, 0xFF, 0, 0);
|
||||
WS2812::led_update(1);
|
||||
static enum StatusLED lastState = LED_UNKNOWN;
|
||||
if (lastState != state) {
|
||||
switch (state) {
|
||||
case LED_UNKNOWN:
|
||||
case LED_OFF:
|
||||
WS2812::led_set_color(0, 0, 0, 0);
|
||||
break;
|
||||
case LED_STANDBY:
|
||||
WS2812::led_set_color(0, 0, 0xFF, 0); //green
|
||||
break;
|
||||
case LED_HEATING:
|
||||
WS2812::led_set_color(0, 0, 0, 0xFF); //Blue
|
||||
break;
|
||||
case LED_HOT:
|
||||
WS2812::led_set_color(0, 0xFF, 0, 0); //red
|
||||
break;
|
||||
case LED_COOLING_STILL_HOT:
|
||||
WS2812::led_set_color(0, 0xFF, 0xFF, 0xFF); //white
|
||||
break;
|
||||
}
|
||||
WS2812::led_update();
|
||||
lastState = state;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -16,8 +16,6 @@ DMA_HandleTypeDef hdma_i2c1_rx;
|
||||
DMA_HandleTypeDef hdma_i2c1_tx;
|
||||
|
||||
IWDG_HandleTypeDef hiwdg;
|
||||
TIM_HandleTypeDef htim1;
|
||||
DMA_HandleTypeDef hdma_tim1_ch1;
|
||||
TIM_HandleTypeDef htim2;
|
||||
TIM_HandleTypeDef htim3;
|
||||
#define ADC_CHANNELS 4
|
||||
@@ -31,7 +29,6 @@ static void MX_I2C1_Init(void);
|
||||
static void MX_IWDG_Init(void);
|
||||
static void MX_TIM3_Init(void);
|
||||
static void MX_TIM2_Init(void);
|
||||
static void MX_TIM1_Init(void);
|
||||
static void MX_DMA_Init(void);
|
||||
static void MX_GPIO_Init(void);
|
||||
static void MX_ADC2_Init(void);
|
||||
@@ -47,7 +44,6 @@ void Setup_HAL() {
|
||||
MX_ADC2_Init();
|
||||
MX_TIM3_Init();
|
||||
MX_TIM2_Init();
|
||||
MX_TIM1_Init();
|
||||
MX_IWDG_Init();
|
||||
HAL_ADC_Start(&hadc2);
|
||||
HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings,
|
||||
@@ -91,7 +87,7 @@ void SystemClock_Config(void) {
|
||||
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
||||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
||||
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
||||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM
|
||||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; // TIM
|
||||
// 2,3,4,5,6,7,12,13,14
|
||||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc
|
||||
|
||||
@@ -222,70 +218,6 @@ static void MX_IWDG_Init(void) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/* TIM1 init function */
|
||||
void MX_TIM1_Init(void) {
|
||||
|
||||
/* USER CODE BEGIN TIM1_Init 0 */
|
||||
|
||||
/* USER CODE END TIM1_Init 0 */
|
||||
|
||||
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
|
||||
TIM_MasterConfigTypeDef sMasterConfig = {0};
|
||||
TIM_OC_InitTypeDef sConfigOC = {0};
|
||||
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
|
||||
|
||||
/* USER CODE BEGIN TIM1_Init 1 */
|
||||
|
||||
/* USER CODE END TIM1_Init 1 */
|
||||
htim1.Instance = TIM1;
|
||||
htim1.Init.Prescaler = 0;
|
||||
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim1.Init.Period = 42;
|
||||
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim1.Init.RepetitionCounter = 0;
|
||||
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
|
||||
HAL_TIM_Base_Init(&htim1);
|
||||
|
||||
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
||||
HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig);
|
||||
|
||||
HAL_TIM_PWM_Init(&htim1);
|
||||
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig);
|
||||
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
|
||||
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
||||
HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1);
|
||||
|
||||
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
|
||||
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
|
||||
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
|
||||
sBreakDeadTimeConfig.DeadTime = 0;
|
||||
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
|
||||
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
|
||||
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
|
||||
HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig);
|
||||
|
||||
__HAL_RCC_GPIOA_CLK_ENABLE();
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
/**TIM1 GPIO Configuration
|
||||
PA8 ------> TIM1_CH1
|
||||
*/
|
||||
GPIO_InitStruct.Pin = WS2812_Pin;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct);
|
||||
__HAL_AFIO_REMAP_TIM1_DISABLE();
|
||||
}
|
||||
|
||||
/* TIM3 init function */
|
||||
static void MX_TIM3_Init(void) {
|
||||
TIM_ClockConfigTypeDef sClockSourceConfig;
|
||||
@@ -382,9 +314,6 @@ static void MX_DMA_Init(void) {
|
||||
/* DMA1_Channel1_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 10, 0);
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
|
||||
/* DMA1_Channel1_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 2, 0); // DMA 1 ch2 is used from TIM CH1 for WS2812
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
|
||||
/* DMA1_Channel6_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
|
||||
@@ -438,8 +367,13 @@ static void MX_GPIO_Init(void) {
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
|
||||
|
||||
GPIO_InitStruct.Pin = WS2812_Pin;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(WS2812_GPIO_Port, WS2812_Pin, GPIO_PIN_RESET);
|
||||
// Pull down LCD reset
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
|
||||
HAL_Delay(30);
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
#include "I2C_Wrapper.hpp"
|
||||
#include "QC3.h"
|
||||
#include "Settings.h"
|
||||
#include "WS2812.h"
|
||||
#include "cmsis_os.h"
|
||||
#include "fusbpd.h"
|
||||
#include "main.hpp"
|
||||
@@ -13,13 +12,5 @@
|
||||
|
||||
// Initialisation to be performed with scheduler active
|
||||
void postRToSInit() {
|
||||
WS2812::init();
|
||||
WS2812::led_set_color(0, 0xAA, 0x00, 0x00);
|
||||
while (true) {
|
||||
// osDelay(1);
|
||||
// WS2812::led_set_color(0, 0xFF, 0xFF, 0xFF);
|
||||
// WS2812::led_update(1);
|
||||
osDelay(10);
|
||||
WS2812::led_update(1);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -126,20 +126,7 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) {
|
||||
|
||||
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim_base) {
|
||||
|
||||
if (htim_base->Instance == TIM1) {
|
||||
__HAL_RCC_TIM1_CLK_ENABLE();
|
||||
__HAL_RCC_DMA1_CLK_ENABLE();
|
||||
hdma_tim1_ch1.Instance = DMA1_Channel2;
|
||||
hdma_tim1_ch1.Init.Direction = DMA_MEMORY_TO_PERIPH;
|
||||
hdma_tim1_ch1.Init.PeriphInc = DMA_PINC_DISABLE;
|
||||
hdma_tim1_ch1.Init.MemInc = DMA_MINC_ENABLE;
|
||||
hdma_tim1_ch1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
|
||||
hdma_tim1_ch1.Init.MemDataAlignment = DMA_PDATAALIGN_HALFWORD;
|
||||
hdma_tim1_ch1.Init.Mode = DMA_CIRCULAR;
|
||||
hdma_tim1_ch1.Init.Priority = DMA_PRIORITY_VERY_HIGH;
|
||||
HAL_DMA_Init(&hdma_tim1_ch1);
|
||||
__HAL_LINKDMA(htim_base, hdma[TIM_DMA_ID_CC1], hdma_tim1_ch1);
|
||||
} else if (htim_base->Instance == TIM3) {
|
||||
if (htim_base->Instance == TIM3) {
|
||||
__HAL_RCC_TIM3_CLK_ENABLE();
|
||||
} else if (htim_base->Instance == TIM2) {
|
||||
__HAL_RCC_TIM2_CLK_ENABLE();
|
||||
|
||||
@@ -42,14 +42,11 @@ void DMA1_Channel1_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_adc1); }
|
||||
// ADC interrupt used for DMA
|
||||
void ADC1_2_IRQHandler(void) { HAL_ADC_IRQHandler(&hadc1); }
|
||||
|
||||
// Timer 1 has overflowed, used for HAL ticks
|
||||
void TIM1_UP_IRQHandler(void) { HAL_TIM_IRQHandler(&htim1); }
|
||||
|
||||
//used for hal ticks
|
||||
void TIM4_IRQHandler(void) { HAL_TIM_IRQHandler(&htim4); }
|
||||
void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); }
|
||||
void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); }
|
||||
|
||||
void DMA1_Channel2_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_tim1_ch1); }
|
||||
void DMA1_Channel6_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_tx); }
|
||||
|
||||
void DMA1_Channel7_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_rx); }
|
||||
|
||||
@@ -5,178 +5,106 @@
|
||||
* Author: Ralim
|
||||
*/
|
||||
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include <WS2812.h>
|
||||
#include "Pins.h"
|
||||
#include <string.h>
|
||||
uint8_t WS2812::leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
|
||||
volatile uint16_t WS2812::tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
|
||||
volatile uint8_t WS2812::is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
|
||||
volatile uint8_t WS2812::is_updating; /*!< Is updating in progress? */
|
||||
volatile uint32_t WS2812::current_led; /*!< Current LED number we are sending */
|
||||
|
||||
void WS2812::init(void) {
|
||||
memset(leds_colors, 0, sizeof(leds_colors));
|
||||
hdma_tim1_ch1.XferHalfCpltCallback = DMAHalfComplete;
|
||||
hdma_tim1_ch1.XferCpltCallback = DMAComplete;
|
||||
htim1.Instance->CCR1 = htim1.Instance->ARR / 2 - 1;
|
||||
htim1.Instance->DIER |= TIM_DIER_CC1DE;
|
||||
|
||||
}
|
||||
|
||||
uint8_t WS2812::led_update(uint8_t block) {
|
||||
if (is_updating) { /* Check if update in progress already */
|
||||
return 0;
|
||||
}
|
||||
is_updating = 1; /* We are now updating */
|
||||
void WS2812::led_update() {
|
||||
__disable_irq();
|
||||
//Bitbang it out as our cpu irq latency is too high
|
||||
for (unsigned int i = 0; i < sizeof(leds_colors); i++) {
|
||||
//Shove out MSB first
|
||||
for (int x = 0; x < 8; x++) {
|
||||
WS2812_GPIO_Port->BSRR = WS2812_Pin;
|
||||
if ((leds_colors[i] & (1 << (7 - x))) == (1 << (7 - x))) {
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
} else {
|
||||
|
||||
led_start_reset_pulse(1); /* Start reset pulse */
|
||||
if (block) {
|
||||
while (!led_is_update_finished()) {
|
||||
vTaskDelay(1);
|
||||
}; /* Wait to finish */
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
}
|
||||
return 1;
|
||||
WS2812_GPIO_Port->BSRR = (uint32_t) WS2812_Pin << 16u;
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
__asm__ __volatile__("nop");
|
||||
}
|
||||
}
|
||||
__enable_irq();
|
||||
}
|
||||
|
||||
void WS2812::led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b) {
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = g;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = r;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
|
||||
}
|
||||
|
||||
void WS2812::led_set_color_all(uint8_t r, uint8_t g, uint8_t b) {
|
||||
for (int index = 0; index < WS2812_LED_COUNT; index++) {
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = g;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = r;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t WS2812::led_is_update_finished(void) { return !is_updating; }
|
||||
|
||||
void WS2812::led_start_reset_pulse(uint8_t num) {
|
||||
is_reset_pulse = num; /* Set reset pulse flag */
|
||||
|
||||
memset((void *)tmp_led_data, 0, sizeof(tmp_led_data)); /* Set all bytes to 0 to achieve 50us pulse */
|
||||
|
||||
if (num == 1) {
|
||||
tmp_led_data[0] = (htim1.Instance->ARR * 2) / 3; // start with half width pulse
|
||||
}
|
||||
|
||||
/* Set DMA to normal mode, set memory to beginning of data and length to 40 elements */
|
||||
/* 800kHz PWM x 40 samples = ~50us pulse low */
|
||||
hdma_tim1_ch1.Instance->CCR &= (~DMA_CCR_CIRC); // clear circular flag -> normal mode
|
||||
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
|
||||
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t)tmp_led_data, (uint32_t)&htim1.Instance->CCR1, 2 * WS2812_RAW_BYTES_PER_LED);
|
||||
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
|
||||
}
|
||||
|
||||
void WS2812::DMAHalfComplete(DMA_HandleTypeDef *hdma) { led_update_sequence(0); }
|
||||
|
||||
void WS2812::DMAComplete(DMA_HandleTypeDef *hdma) { led_update_sequence(1); }
|
||||
|
||||
void WS2812::led_update_sequence(uint8_t tc) {
|
||||
tc = !!tc; /* Convert to 1 or 0 value only */
|
||||
|
||||
/* Check for reset pulse at the end of PWM stream */
|
||||
if (is_reset_pulse == 2) { /* Check for reset pulse at the end */
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
is_updating = 0; /* We are not updating anymore */
|
||||
return;
|
||||
}
|
||||
|
||||
/* Check for reset pulse on beginning of PWM stream */
|
||||
if (is_reset_pulse == 1) { /* Check if we finished with reset pulse */
|
||||
/*
|
||||
* When reset pulse is active, we have to wait full DMA response,
|
||||
* before we can start modifying array which is shared with DMA and PWM
|
||||
*/
|
||||
if (!tc) { /* We must wait for transfer complete */
|
||||
return; /* Return and wait to finish */
|
||||
}
|
||||
|
||||
/* Disable timer output and disable DMA stream */
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
|
||||
is_reset_pulse = 0; /* Not in reset pulse anymore */
|
||||
current_led = 0; /* Reset current led */
|
||||
} else {
|
||||
/*
|
||||
* When we are not in reset mode,
|
||||
* go to next led and process data for it
|
||||
*/
|
||||
current_led++; /* Go to next LED */
|
||||
}
|
||||
|
||||
/*
|
||||
* This part is used to prepare data for "next" led,
|
||||
* for which update will start once current transfer stops in circular mode
|
||||
*/
|
||||
if (current_led < WS2812_LED_COUNT) {
|
||||
/*
|
||||
* If we are preparing data for first time (current_led == 0)
|
||||
* or if there was no TC event (it was HT):
|
||||
*
|
||||
* - Prepare first part of array, because either there is no transfer
|
||||
* or second part (from HT to TC) is now in process for PWM transfer
|
||||
*
|
||||
* In other case (TC = 1)
|
||||
*/
|
||||
if (current_led == 0 || !tc) {
|
||||
led_fill_led_pwm_data(current_led, &tmp_led_data[0]);
|
||||
} else {
|
||||
led_fill_led_pwm_data(current_led, &tmp_led_data[WS2812_RAW_BYTES_PER_LED]);
|
||||
}
|
||||
|
||||
/*
|
||||
* If we are preparing first led (current_led = 0), then:
|
||||
*
|
||||
* - We setup first part of array for first led,
|
||||
* - We have to prepare second part for second led to have one led prepared in advance
|
||||
* - Set DMA to circular mode and start the transfer + PWM output
|
||||
*/
|
||||
if (current_led == 0) {
|
||||
|
||||
current_led++; /* Go to next LED */
|
||||
led_fill_led_pwm_data(current_led, &tmp_led_data[WS2812_RAW_BYTES_PER_LED]); /* Prepare second LED too */
|
||||
hdma_tim1_ch1.Instance->CCR |= (DMA_CCR_CIRC); // set circular flag for circular mode
|
||||
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
|
||||
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t)tmp_led_data, (uint32_t)&htim1.Instance->CCR1, 2 * WS2812_RAW_BYTES_PER_LED);
|
||||
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
|
||||
}
|
||||
|
||||
/*
|
||||
* When we reached all leds, we have to wait to transmit data for all leds before we can disable DMA and PWM:
|
||||
*
|
||||
* - If TC event is enabled and we have EVEN number of LEDS (2, 4, 6, ...)
|
||||
* - If HT event is enabled and we have ODD number of LEDS (1, 3, 5, ...)
|
||||
*/
|
||||
} else if ((!tc && (WS2812_LED_COUNT & 0x01)) || (tc && !(WS2812_LED_COUNT & 0x01))) {
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
|
||||
/* It is time to send final reset pulse, 50us at least */
|
||||
led_start_reset_pulse(2); /* Start reset pulse at the end */
|
||||
}
|
||||
}
|
||||
|
||||
void WS2812::led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr) {
|
||||
size_t i;
|
||||
uint16_t OnOffValues[] = {2 * htim1.Instance->ARR / 3, (4 * htim1.Instance->ARR) / 3};
|
||||
|
||||
if (ledx < WS2812_LED_COUNT) {
|
||||
for (i = 0; i < 8; i++) {
|
||||
// Also unmux RGB -> GRB in the index order here
|
||||
ptr[i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 1] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
ptr[8 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 0] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
ptr[16 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 2] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
#if WS2812_LED_CHANNEL_COUNT == 4
|
||||
ptr[24 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 3] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
#endif
|
||||
}
|
||||
} else {
|
||||
// Fill with zero?
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
#ifndef CORE_DRIVERS_WS2812_H_
|
||||
#define CORE_DRIVERS_WS2812_H_
|
||||
#ifndef WS2812_LED_COUNT
|
||||
#define WS2812_LED_COUNT 3
|
||||
#define WS2812_LED_COUNT 2
|
||||
#endif
|
||||
#ifndef WS2812_LED_CHANNEL_COUNT
|
||||
#define WS2812_LED_CHANNEL_COUNT 3
|
||||
@@ -20,22 +20,13 @@
|
||||
class WS2812 {
|
||||
public:
|
||||
static void init(void);
|
||||
static uint8_t led_update(uint8_t block);
|
||||
static void led_update();
|
||||
static void led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b);
|
||||
static void led_set_color_all(uint8_t r, uint8_t g, uint8_t b);
|
||||
|
||||
private:
|
||||
static uint8_t led_is_update_finished(void);
|
||||
static void led_start_reset_pulse(uint8_t num);
|
||||
static void DMAHalfComplete(DMA_HandleTypeDef *hdma);
|
||||
static void DMAComplete(DMA_HandleTypeDef *hdma);
|
||||
static void led_update_sequence(uint8_t tc);
|
||||
static void led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr);
|
||||
|
||||
static uint8_t leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
|
||||
static volatile uint16_t tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
|
||||
static volatile uint8_t is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
|
||||
static volatile uint8_t is_updating; /*!< Is updating in progress? */
|
||||
static volatile uint32_t current_led; /*!< Current LED number we are sending */
|
||||
};
|
||||
|
||||
#endif /* CORE_DRIVERS_WS2812_H_ */
|
||||
|
||||
@@ -199,11 +199,14 @@ static void gui_solderingTempAdjust() {
|
||||
return;
|
||||
break;
|
||||
case BUTTON_B_LONG:
|
||||
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration > PRESS_ACCEL_INTERVAL_MAX) {
|
||||
if (xTaskGetTickCount() - autoRepeatTimer
|
||||
+ autoRepeatAcceleration> PRESS_ACCEL_INTERVAL_MAX) {
|
||||
if (systemSettings.ReverseButtonTempChangeEnabled) {
|
||||
systemSettings.SolderingTemp += systemSettings.TempChangeLongStep;
|
||||
systemSettings.SolderingTemp +=
|
||||
systemSettings.TempChangeLongStep;
|
||||
} else
|
||||
systemSettings.SolderingTemp -= systemSettings.TempChangeLongStep;
|
||||
systemSettings.SolderingTemp -=
|
||||
systemSettings.TempChangeLongStep;
|
||||
|
||||
autoRepeatTimer = xTaskGetTickCount();
|
||||
autoRepeatAcceleration += PRESS_ACCEL_STEP;
|
||||
@@ -211,31 +214,40 @@ static void gui_solderingTempAdjust() {
|
||||
break;
|
||||
case BUTTON_B_SHORT:
|
||||
if (systemSettings.ReverseButtonTempChangeEnabled) {
|
||||
systemSettings.SolderingTemp += systemSettings.TempChangeShortStep;
|
||||
systemSettings.SolderingTemp +=
|
||||
systemSettings.TempChangeShortStep;
|
||||
} else
|
||||
systemSettings.SolderingTemp -= systemSettings.TempChangeShortStep;
|
||||
systemSettings.SolderingTemp -=
|
||||
systemSettings.TempChangeShortStep;
|
||||
break;
|
||||
case BUTTON_F_LONG:
|
||||
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration > PRESS_ACCEL_INTERVAL_MAX) {
|
||||
if (xTaskGetTickCount() - autoRepeatTimer
|
||||
+ autoRepeatAcceleration> PRESS_ACCEL_INTERVAL_MAX) {
|
||||
if (systemSettings.ReverseButtonTempChangeEnabled) {
|
||||
systemSettings.SolderingTemp -= systemSettings.TempChangeLongStep;
|
||||
systemSettings.SolderingTemp -=
|
||||
systemSettings.TempChangeLongStep;
|
||||
} else
|
||||
systemSettings.SolderingTemp += systemSettings.TempChangeLongStep;
|
||||
systemSettings.SolderingTemp +=
|
||||
systemSettings.TempChangeLongStep;
|
||||
autoRepeatTimer = xTaskGetTickCount();
|
||||
autoRepeatAcceleration += PRESS_ACCEL_STEP;
|
||||
}
|
||||
break;
|
||||
case BUTTON_F_SHORT:
|
||||
if (systemSettings.ReverseButtonTempChangeEnabled) {
|
||||
systemSettings.SolderingTemp -= systemSettings.TempChangeShortStep; // add 10
|
||||
systemSettings.SolderingTemp -=
|
||||
systemSettings.TempChangeShortStep; // add 10
|
||||
} else
|
||||
systemSettings.SolderingTemp += systemSettings.TempChangeShortStep; // add 10
|
||||
systemSettings.SolderingTemp +=
|
||||
systemSettings.TempChangeShortStep; // add 10
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if ((PRESS_ACCEL_INTERVAL_MAX - autoRepeatAcceleration) < PRESS_ACCEL_INTERVAL_MIN) {
|
||||
autoRepeatAcceleration = PRESS_ACCEL_INTERVAL_MAX - PRESS_ACCEL_INTERVAL_MIN;
|
||||
if ((PRESS_ACCEL_INTERVAL_MAX - autoRepeatAcceleration)
|
||||
< PRESS_ACCEL_INTERVAL_MIN) {
|
||||
autoRepeatAcceleration = PRESS_ACCEL_INTERVAL_MAX
|
||||
- PRESS_ACCEL_INTERVAL_MIN;
|
||||
}
|
||||
// constrain between 10-450 C
|
||||
if (systemSettings.temperatureInF) {
|
||||
@@ -258,9 +270,13 @@ static void gui_solderingTempAdjust() {
|
||||
#else
|
||||
if (OLED::getRotation()) {
|
||||
#endif
|
||||
OLED::print(systemSettings.ReverseButtonTempChangeEnabled ? SymbolPlus : SymbolMinus, FontStyle::LARGE);
|
||||
OLED::print(
|
||||
systemSettings.ReverseButtonTempChangeEnabled ?
|
||||
SymbolPlus : SymbolMinus, FontStyle::LARGE);
|
||||
} else {
|
||||
OLED::print(systemSettings.ReverseButtonTempChangeEnabled ? SymbolMinus : SymbolPlus, FontStyle::LARGE);
|
||||
OLED::print(
|
||||
systemSettings.ReverseButtonTempChangeEnabled ?
|
||||
SymbolMinus : SymbolPlus, FontStyle::LARGE);
|
||||
}
|
||||
|
||||
OLED::print(SymbolSpace, FontStyle::LARGE);
|
||||
@@ -276,9 +292,13 @@ static void gui_solderingTempAdjust() {
|
||||
#else
|
||||
if (OLED::getRotation()) {
|
||||
#endif
|
||||
OLED::print(systemSettings.ReverseButtonTempChangeEnabled ? SymbolMinus : SymbolPlus, FontStyle::LARGE);
|
||||
OLED::print(
|
||||
systemSettings.ReverseButtonTempChangeEnabled ?
|
||||
SymbolMinus : SymbolPlus, FontStyle::LARGE);
|
||||
} else {
|
||||
OLED::print(systemSettings.ReverseButtonTempChangeEnabled ? SymbolPlus : SymbolMinus, FontStyle::LARGE);
|
||||
OLED::print(
|
||||
systemSettings.ReverseButtonTempChangeEnabled ?
|
||||
SymbolPlus : SymbolMinus, FontStyle::LARGE);
|
||||
}
|
||||
OLED::refresh();
|
||||
GUIDelay();
|
||||
@@ -287,12 +307,14 @@ static void gui_solderingTempAdjust() {
|
||||
static bool shouldShutdown() {
|
||||
if (systemSettings.ShutdownTime) { // only allow shutdown exit if time > 0
|
||||
if (lastMovementTime) {
|
||||
if (((TickType_t)(xTaskGetTickCount() - lastMovementTime)) > (TickType_t)(systemSettings.ShutdownTime * TICKS_MIN)) {
|
||||
if (((TickType_t) (xTaskGetTickCount() - lastMovementTime))
|
||||
> (TickType_t) (systemSettings.ShutdownTime * TICKS_MIN)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
if (lastHallEffectSleepStart) {
|
||||
if (((TickType_t)(xTaskGetTickCount() - lastHallEffectSleepStart)) > (TickType_t)(systemSettings.ShutdownTime * TICKS_MIN)) {
|
||||
if (((TickType_t) (xTaskGetTickCount() - lastHallEffectSleepStart))
|
||||
> (TickType_t) (systemSettings.ShutdownTime * TICKS_MIN)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@@ -311,9 +333,18 @@ static int gui_SolderingSleepingMode(bool stayOff, bool autoStarted) {
|
||||
return 1; // return non-zero on error
|
||||
#endif
|
||||
if (systemSettings.temperatureInF) {
|
||||
currentTempTargetDegC = stayOff ? 0 : TipThermoModel::convertFtoC(min(systemSettings.SleepTemp, systemSettings.SolderingTemp));
|
||||
currentTempTargetDegC =
|
||||
stayOff ?
|
||||
0 :
|
||||
TipThermoModel::convertFtoC(
|
||||
min(systemSettings.SleepTemp,
|
||||
systemSettings.SolderingTemp));
|
||||
} else {
|
||||
currentTempTargetDegC = stayOff ? 0 : min(systemSettings.SleepTemp, systemSettings.SolderingTemp);
|
||||
currentTempTargetDegC =
|
||||
stayOff ?
|
||||
0 :
|
||||
min(systemSettings.SleepTemp,
|
||||
systemSettings.SolderingTemp);
|
||||
}
|
||||
// draw the lcd
|
||||
uint16_t tipTemp;
|
||||
@@ -326,9 +357,11 @@ static int gui_SolderingSleepingMode(bool stayOff, bool autoStarted) {
|
||||
OLED::clearScreen();
|
||||
OLED::setCursor(0, 0);
|
||||
if (systemSettings.detailedSoldering) {
|
||||
OLED::print(translatedString(Tr->SleepingAdvancedString), FontStyle::SMALL);
|
||||
OLED::print(translatedString(Tr->SleepingAdvancedString),
|
||||
FontStyle::SMALL);
|
||||
OLED::setCursor(0, 8);
|
||||
OLED::print(translatedString(Tr->SleepingTipAdvancedString), FontStyle::SMALL);
|
||||
OLED::print(translatedString(Tr->SleepingTipAdvancedString),
|
||||
FontStyle::SMALL);
|
||||
OLED::printNumber(tipTemp, 3, FontStyle::SMALL);
|
||||
if (systemSettings.temperatureInF)
|
||||
OLED::print(SymbolDegF, FontStyle::SMALL);
|
||||
@@ -340,7 +373,8 @@ static int gui_SolderingSleepingMode(bool stayOff, bool autoStarted) {
|
||||
printVoltage();
|
||||
OLED::print(SymbolVolts, FontStyle::SMALL);
|
||||
} else {
|
||||
OLED::print(translatedString(Tr->SleepingSimpleString), FontStyle::LARGE);
|
||||
OLED::print(translatedString(Tr->SleepingSimpleString),
|
||||
FontStyle::LARGE);
|
||||
OLED::printNumber(tipTemp, 3, FontStyle::LARGE);
|
||||
if (systemSettings.temperatureInF)
|
||||
OLED::drawSymbol(0);
|
||||
@@ -359,7 +393,8 @@ static int gui_SolderingSleepingMode(bool stayOff, bool autoStarted) {
|
||||
// If we have moved recently; in the last second
|
||||
// Then exit soldering mode
|
||||
|
||||
if (((TickType_t)(xTaskGetTickCount() - lastMovementTime)) < (TickType_t)(TICKS_SECOND)) {
|
||||
if (((TickType_t) (xTaskGetTickCount() - lastMovementTime))
|
||||
< (TickType_t) (TICKS_SECOND)) {
|
||||
currentTempTargetDegC = 0;
|
||||
return 1;
|
||||
}
|
||||
@@ -486,11 +521,13 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
|
||||
case BUTTON_BOTH_LONG:
|
||||
// Unlock buttons
|
||||
buttonsLocked = false;
|
||||
warnUser(translatedString(Tr->UnlockingKeysString), TICKS_SECOND);
|
||||
warnUser(translatedString(Tr->UnlockingKeysString),
|
||||
TICKS_SECOND);
|
||||
break;
|
||||
case BUTTON_F_LONG:
|
||||
// if boost mode is enabled turn it on
|
||||
if (systemSettings.BoostTemp && (systemSettings.lockingMode == 1)) {
|
||||
if (systemSettings.BoostTemp
|
||||
&& (systemSettings.lockingMode == 1)) {
|
||||
boostModeOn = true;
|
||||
}
|
||||
break;
|
||||
@@ -500,7 +537,8 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
|
||||
case BUTTON_F_SHORT:
|
||||
case BUTTON_B_SHORT:
|
||||
// Do nothing and display a lock warming
|
||||
warnUser(translatedString(Tr->WarningKeysLockedString), TICKS_SECOND / 2);
|
||||
warnUser(translatedString(Tr->WarningKeysLockedString),
|
||||
TICKS_SECOND / 2);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
@@ -530,12 +568,14 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
|
||||
if (oldTemp != systemSettings.SolderingTemp) {
|
||||
saveSettings(); // only save on change
|
||||
}
|
||||
} break;
|
||||
}
|
||||
break;
|
||||
case BUTTON_BOTH_LONG:
|
||||
if (systemSettings.lockingMode != 0) {
|
||||
// Lock buttons
|
||||
buttonsLocked = true;
|
||||
warnUser(translatedString(Tr->LockingKeysString), TICKS_SECOND);
|
||||
warnUser(translatedString(Tr->LockingKeysString),
|
||||
TICKS_SECOND);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
@@ -549,9 +589,11 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
|
||||
if (systemSettings.detailedSoldering) {
|
||||
OLED::print(translatedString(Tr->SolderingAdvancedPowerPrompt),
|
||||
FontStyle::SMALL); // Power:
|
||||
OLED::printNumber(x10WattHistory.average() / 10, 2, FontStyle::SMALL);
|
||||
OLED::printNumber(x10WattHistory.average() / 10, 2,
|
||||
FontStyle::SMALL);
|
||||
OLED::print(SymbolDot, FontStyle::SMALL);
|
||||
OLED::printNumber(x10WattHistory.average() % 10, 1, FontStyle::SMALL);
|
||||
OLED::printNumber(x10WattHistory.average() % 10, 1,
|
||||
FontStyle::SMALL);
|
||||
OLED::print(SymbolWatts, FontStyle::SMALL);
|
||||
#ifndef NO_SLEEP_MODE
|
||||
if (systemSettings.sensitivity && systemSettings.SleepTime) {
|
||||
@@ -560,7 +602,8 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
|
||||
}
|
||||
#endif
|
||||
OLED::setCursor(0, 8);
|
||||
OLED::print(translatedString(Tr->SleepingTipAdvancedString), FontStyle::SMALL);
|
||||
OLED::print(translatedString(Tr->SleepingTipAdvancedString),
|
||||
FontStyle::SMALL);
|
||||
gui_drawTipTemp(true, FontStyle::SMALL);
|
||||
|
||||
if (boostModeOn) {
|
||||
@@ -609,13 +652,15 @@ static void gui_solderingMode(uint8_t jumpToSleep) {
|
||||
// Update the setpoints for the temperature
|
||||
if (boostModeOn) {
|
||||
if (systemSettings.temperatureInF)
|
||||
currentTempTargetDegC = TipThermoModel::convertFtoC(systemSettings.BoostTemp);
|
||||
currentTempTargetDegC = TipThermoModel::convertFtoC(
|
||||
systemSettings.BoostTemp);
|
||||
else {
|
||||
currentTempTargetDegC = (systemSettings.BoostTemp);
|
||||
}
|
||||
} else {
|
||||
if (systemSettings.temperatureInF)
|
||||
currentTempTargetDegC = TipThermoModel::convertFtoC(systemSettings.SolderingTemp);
|
||||
currentTempTargetDegC = TipThermoModel::convertFtoC(
|
||||
systemSettings.SolderingTemp);
|
||||
else {
|
||||
currentTempTargetDegC = (systemSettings.SolderingTemp);
|
||||
}
|
||||
@@ -653,27 +698,36 @@ void showDebugMenu(void) {
|
||||
break;
|
||||
case 1:
|
||||
// High water mark for GUI
|
||||
OLED::printNumber(uxTaskGetStackHighWaterMark(GUITaskHandle), 5, FontStyle::SMALL);
|
||||
OLED::printNumber(uxTaskGetStackHighWaterMark(GUITaskHandle), 5,
|
||||
FontStyle::SMALL);
|
||||
break;
|
||||
case 2:
|
||||
// High water mark for the Movement task
|
||||
OLED::printNumber(uxTaskGetStackHighWaterMark(MOVTaskHandle), 5, FontStyle::SMALL);
|
||||
OLED::printNumber(uxTaskGetStackHighWaterMark(MOVTaskHandle), 5,
|
||||
FontStyle::SMALL);
|
||||
break;
|
||||
case 3:
|
||||
// High water mark for the PID task
|
||||
OLED::printNumber(uxTaskGetStackHighWaterMark(PIDTaskHandle), 5, FontStyle::SMALL);
|
||||
OLED::printNumber(uxTaskGetStackHighWaterMark(PIDTaskHandle), 5,
|
||||
FontStyle::SMALL);
|
||||
break;
|
||||
case 4:
|
||||
// system up time stamp
|
||||
OLED::printNumber(xTaskGetTickCount() / TICKS_100MS, 5, FontStyle::SMALL);
|
||||
OLED::printNumber(xTaskGetTickCount() / TICKS_100MS, 5,
|
||||
FontStyle::SMALL);
|
||||
break;
|
||||
case 5:
|
||||
// Movement time stamp
|
||||
OLED::printNumber(lastMovementTime / TICKS_100MS, 5, FontStyle::SMALL);
|
||||
OLED::printNumber(lastMovementTime / TICKS_100MS, 5,
|
||||
FontStyle::SMALL);
|
||||
break;
|
||||
case 6:
|
||||
// Raw Tip
|
||||
{ OLED::printNumber(TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0), true), 6, FontStyle::SMALL); }
|
||||
{
|
||||
OLED::printNumber(
|
||||
TipThermoModel::convertTipRawADCTouV(getTipRawTemp(0),
|
||||
true), 6, FontStyle::SMALL);
|
||||
}
|
||||
break;
|
||||
case 7:
|
||||
// Temp in C
|
||||
@@ -689,7 +743,8 @@ void showDebugMenu(void) {
|
||||
break;
|
||||
case 10:
|
||||
// Print PCB ID number
|
||||
OLED::printNumber(DetectedAccelerometerVersion, 2, FontStyle::SMALL);
|
||||
OLED::printNumber(DetectedAccelerometerVersion, 2,
|
||||
FontStyle::SMALL);
|
||||
break;
|
||||
case 11:
|
||||
// Power negotiation status
|
||||
@@ -717,7 +772,8 @@ void showDebugMenu(void) {
|
||||
break;
|
||||
case 12:
|
||||
// Max deg C limit
|
||||
OLED::printNumber(TipThermoModel::getTipMaxInC(), 3, FontStyle::SMALL);
|
||||
OLED::printNumber(TipThermoModel::getTipMaxInC(), 3,
|
||||
FontStyle::SMALL);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
@@ -752,7 +808,8 @@ void showWarnings() {
|
||||
if (systemSettings.accelMissingWarningCounter < 2) {
|
||||
systemSettings.accelMissingWarningCounter++;
|
||||
saveSettings();
|
||||
warnUser(translatedString(Tr->NoAccelerometerMessage), 10 * TICKS_SECOND);
|
||||
warnUser(translatedString(Tr->NoAccelerometerMessage),
|
||||
10 * TICKS_SECOND);
|
||||
}
|
||||
}
|
||||
#ifdef POW_PD
|
||||
@@ -761,7 +818,8 @@ void showWarnings() {
|
||||
if (systemSettings.pdMissingWarningCounter < 2) {
|
||||
systemSettings.pdMissingWarningCounter++;
|
||||
saveSettings();
|
||||
warnUser(translatedString(Tr->NoPowerDeliveryMessage), 10 * TICKS_SECOND);
|
||||
warnUser(translatedString(Tr->NoPowerDeliveryMessage),
|
||||
10 * TICKS_SECOND);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@@ -784,7 +842,8 @@ void startGUITask(void const *argument __unused) {
|
||||
// flipped is generated by flipping each row
|
||||
for (int row = 0; row < 2; row++) {
|
||||
for (int x = 0; x < 84; x++) {
|
||||
idleScreenBGF[(row * 84) + x] = idleScreenBG[(row * 84) + (83 - x)];
|
||||
idleScreenBGF[(row * 84) + x] = idleScreenBG[(row * 84)
|
||||
+ (83 - x)];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -856,7 +915,11 @@ void startGUITask(void const *argument __unused) {
|
||||
currentTempTargetDegC = 0; // ensure tip is off
|
||||
getInputVoltageX10(systemSettings.voltageDiv, 0);
|
||||
uint32_t tipTemp = TipThermoModel::getTipInC();
|
||||
|
||||
if (tipTemp > 55) {
|
||||
setStatusLED(LED_COOLING_STILL_HOT);
|
||||
} else {
|
||||
setStatusLED(LED_OFF);
|
||||
}
|
||||
// Preemptively turn the display on. Turn it off if and only if
|
||||
// the tip temperature is below 50 degrees C *and* motion sleep
|
||||
// detection is enabled *and* there has been no activity (movement or
|
||||
@@ -864,7 +927,11 @@ void startGUITask(void const *argument __unused) {
|
||||
// This is zero cost really as state is only changed on display updates
|
||||
OLED::setDisplayState(OLED::DisplayState::ON);
|
||||
|
||||
if ((tipTemp < 50) && systemSettings.sensitivity && (((xTaskGetTickCount() - lastMovementTime) > MOVEMENT_INACTIVITY_TIME) && ((xTaskGetTickCount() - lastButtonTime) > BUTTON_INACTIVITY_TIME))) {
|
||||
if ((tipTemp < 50) && systemSettings.sensitivity
|
||||
&& (((xTaskGetTickCount() - lastMovementTime)
|
||||
> MOVEMENT_INACTIVITY_TIME)
|
||||
&& ((xTaskGetTickCount() - lastButtonTime)
|
||||
> BUTTON_INACTIVITY_TIME))) {
|
||||
OLED::setDisplayState(OLED::DisplayState::OFF);
|
||||
}
|
||||
// Clear the lcd buffer
|
||||
@@ -872,16 +939,21 @@ void startGUITask(void const *argument __unused) {
|
||||
OLED::setCursor(0, 0);
|
||||
if (systemSettings.detailedIDLE) {
|
||||
if (isTipDisconnected()) {
|
||||
OLED::print(translatedString(Tr->TipDisconnectedString), FontStyle::SMALL);
|
||||
OLED::print(translatedString(Tr->TipDisconnectedString),
|
||||
FontStyle::SMALL);
|
||||
} else {
|
||||
OLED::print(translatedString(Tr->IdleTipString), FontStyle::SMALL);
|
||||
OLED::print(translatedString(Tr->IdleTipString),
|
||||
FontStyle::SMALL);
|
||||
gui_drawTipTemp(false, FontStyle::SMALL);
|
||||
OLED::print(translatedString(Tr->IdleSetString), FontStyle::SMALL);
|
||||
OLED::printNumber(systemSettings.SolderingTemp, 3, FontStyle::SMALL);
|
||||
OLED::print(translatedString(Tr->IdleSetString),
|
||||
FontStyle::SMALL);
|
||||
OLED::printNumber(systemSettings.SolderingTemp, 3,
|
||||
FontStyle::SMALL);
|
||||
}
|
||||
OLED::setCursor(0, 8);
|
||||
|
||||
OLED::print(translatedString(Tr->InputVoltageString), FontStyle::SMALL);
|
||||
OLED::print(translatedString(Tr->InputVoltageString),
|
||||
FontStyle::SMALL);
|
||||
printVoltage();
|
||||
|
||||
} else {
|
||||
@@ -927,7 +999,8 @@ void startGUITask(void const *argument __unused) {
|
||||
// If we have a tip connected draw the temp, if not we leave it blank
|
||||
if (!tipDisconnectedDisplay) {
|
||||
// draw in the temp
|
||||
if (!(systemSettings.coolingTempBlink && (xTaskGetTickCount() % 260 < 160)))
|
||||
if (!(systemSettings.coolingTempBlink
|
||||
&& (xTaskGetTickCount() % 260 < 160)))
|
||||
gui_drawTipTemp(false, FontStyle::LARGE); // draw in the temp
|
||||
} else {
|
||||
// Draw in missing tip symbol
|
||||
|
||||
Reference in New Issue
Block a user