Removing timer as wont work & replace with bit bang

Cant keep up with irq
This commit is contained in:
Ben V. Brown
2021-05-03 21:52:18 +10:00
parent dd5714fa17
commit 5ea2908fa2
8 changed files with 1239 additions and 1292 deletions

View File

@@ -13,405 +13,451 @@
#include "main.hpp" #include "main.hpp"
#include <IRQ.h> #include <IRQ.h>
volatile uint16_t PWMSafetyTimer = 0; volatile uint16_t PWMSafetyTimer = 0;
volatile uint8_t pendingPWM = 0; volatile uint8_t pendingPWM = 0;
uint16_t totalPWM = 255; uint16_t totalPWM = 255;
const uint16_t powerPWM = 255; const uint16_t powerPWM = 255;
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0}; history<uint16_t, PID_TIM_HZ> rawTempFilter = { { 0 }, 0, 0 };
void resetWatchdog() { HAL_IWDG_Refresh(&hiwdg); } void resetWatchdog() {
HAL_IWDG_Refresh(&hiwdg);
}
#ifdef TEMP_NTC #ifdef TEMP_NTC
// Lookup table for the NTC // Lookup table for the NTC
// Stored as ADCReading,Temp in degC // Stored as ADCReading,Temp in degC
static const uint16_t NTCHandleLookup[] = { static const uint16_t NTCHandleLookup[] = {
// ADC Reading , Temp in Cx10 // ADC Reading , Temp in Cx10
808, 1600, // 808, 1600, //
832, 1590, // 832, 1590, //
848, 1580, // 848, 1580, //
872, 1570, // 872, 1570, //
888, 1560, // 888, 1560, //
912, 1550, // 912, 1550, //
936, 1540, // 936, 1540, //
960, 1530, // 960, 1530, //
984, 1520, // 984, 1520, //
1008, 1510, // 1008, 1510, //
1032, 1500, // 1032, 1500, //
1056, 1490, // 1056, 1490, //
1080, 1480, // 1080, 1480, //
1112, 1470, // 1112, 1470, //
1136, 1460, // 1136, 1460, //
1168, 1450, // 1168, 1450, //
1200, 1440, // 1200, 1440, //
1224, 1430, // 1224, 1430, //
1256, 1420, // 1256, 1420, //
1288, 1410, // 1288, 1410, //
1328, 1400, // 1328, 1400, //
1360, 1390, // 1360, 1390, //
1392, 1380, // 1392, 1380, //
1432, 1370, // 1432, 1370, //
1464, 1360, // 1464, 1360, //
1504, 1350, // 1504, 1350, //
1544, 1340, // 1544, 1340, //
1584, 1330, // 1584, 1330, //
1632, 1320, // 1632, 1320, //
1672, 1310, // 1672, 1310, //
1720, 1300, // 1720, 1300, //
1760, 1290, // 1760, 1290, //
1808, 1280, // 1808, 1280, //
1856, 1270, // 1856, 1270, //
1912, 1260, // 1912, 1260, //
1960, 1250, // 1960, 1250, //
2016, 1240, // 2016, 1240, //
2072, 1230, // 2072, 1230, //
2128, 1220, // 2128, 1220, //
2184, 1210, // 2184, 1210, //
2248, 1200, // 2248, 1200, //
2304, 1190, // 2304, 1190, //
2368, 1180, // 2368, 1180, //
2440, 1170, // 2440, 1170, //
2504, 1160, // 2504, 1160, //
2576, 1150, // 2576, 1150, //
2648, 1140, // 2648, 1140, //
2720, 1130, // 2720, 1130, //
2792, 1120, // 2792, 1120, //
2872, 1110, // 2872, 1110, //
2952, 1100, // 2952, 1100, //
3040, 1090, // 3040, 1090, //
3128, 1080, // 3128, 1080, //
3216, 1070, // 3216, 1070, //
3304, 1060, // 3304, 1060, //
3400, 1050, // 3400, 1050, //
3496, 1040, // 3496, 1040, //
3592, 1030, // 3592, 1030, //
3696, 1020, // 3696, 1020, //
3800, 1010, // 3800, 1010, //
3912, 1000, // 3912, 1000, //
4024, 990, // 4024, 990, //
4136, 980, // 4136, 980, //
4256, 970, // 4256, 970, //
4376, 960, // 4376, 960, //
4504, 950, // 4504, 950, //
4632, 940, // 4632, 940, //
4768, 930, // 4768, 930, //
4904, 920, // 4904, 920, //
5048, 910, // 5048, 910, //
5192, 900, // 5192, 900, //
5336, 890, // 5336, 890, //
5488, 880, // 5488, 880, //
5648, 870, // 5648, 870, //
5808, 860, // 5808, 860, //
5976, 850, // 5976, 850, //
6144, 840, // 6144, 840, //
6320, 830, // 6320, 830, //
6504, 820, // 6504, 820, //
6688, 810, // 6688, 810, //
6872, 800, // 6872, 800, //
7072, 790, // 7072, 790, //
7264, 780, // 7264, 780, //
7472, 770, // 7472, 770, //
7680, 760, // 7680, 760, //
7896, 750, // 7896, 750, //
8112, 740, // 8112, 740, //
8336, 730, // 8336, 730, //
8568, 720, // 8568, 720, //
8800, 710, // 8800, 710, //
9040, 700, // 9040, 700, //
9288, 690, // 9288, 690, //
9536, 680, // 9536, 680, //
9792, 670, // 9792, 670, //
10056, 660, // 10056, 660, //
10320, 650, // 10320, 650, //
10592, 640, // 10592, 640, //
10872, 630, // 10872, 630, //
11152, 620, // 11152, 620, //
11440, 610, // 11440, 610, //
11728, 600, // 11728, 600, //
12024, 590, // 12024, 590, //
12320, 580, // 12320, 580, //
12632, 570, // 12632, 570, //
12936, 560, // 12936, 560, //
13248, 550, // 13248, 550, //
13568, 540, // 13568, 540, //
13888, 530, // 13888, 530, //
14216, 520, // 14216, 520, //
14544, 510, // 14544, 510, //
14880, 500, // 14880, 500, //
15216, 490, // 15216, 490, //
15552, 480, // 15552, 480, //
15888, 470, // 15888, 470, //
16232, 460, // 16232, 460, //
16576, 450, // 16576, 450, //
16920, 440, // 16920, 440, //
17272, 430, // 17272, 430, //
17616, 420, // 17616, 420, //
17968, 410, // 17968, 410, //
18320, 400, // 18320, 400, //
18664, 390, // 18664, 390, //
19016, 380, // 19016, 380, //
19368, 370, // 19368, 370, //
19712, 360, // 19712, 360, //
20064, 350, // 20064, 350, //
20408, 340, // 20408, 340, //
20752, 330, // 20752, 330, //
21088, 320, // 21088, 320, //
21432, 310, // 21432, 310, //
21768, 300, // 21768, 300, //
22096, 290, // 22096, 290, //
22424, 280, // 22424, 280, //
22752, 270, // 22752, 270, //
23072, 260, // 23072, 260, //
23392, 250, // 23392, 250, //
23704, 240, // 23704, 240, //
24008, 230, // 24008, 230, //
24312, 220, // 24312, 220, //
24608, 210, // 24608, 210, //
24904, 200, // 24904, 200, //
25192, 190, // 25192, 190, //
25472, 180, // 25472, 180, //
25744, 170, // 25744, 170, //
26016, 160, // 26016, 160, //
26280, 150, // 26280, 150, //
26536, 140, // 26536, 140, //
26784, 130, // 26784, 130, //
27024, 120, // 27024, 120, //
27264, 110, // 27264, 110, //
27496, 100, // 27496, 100, //
27720, 90, // 27720, 90, //
27936, 80, // 27936, 80, //
28144, 70, // 28144, 70, //
28352, 60, // 28352, 60, //
28544, 50, // 28544, 50, //
28736, 40, // 28736, 40, //
28920, 30, // 28920, 30, //
29104, 20, // 29104, 20, //
29272, 10, // 29272, 10, //
}; };
const int NTCHandleLookupItems = sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t)); const int NTCHandleLookupItems = sizeof(NTCHandleLookup)
/ (2 * sizeof(uint16_t));
#endif #endif
// These are called by the HAL after the corresponding events from the system // These are called by the HAL after the corresponding events from the system
// timers. // timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed // Period has elapsed
if (htim->Instance == TIM4) { if (htim->Instance == TIM4) {
// STM uses this for internal functions as a counter for timeouts // STM uses this for internal functions as a counter for timeouts
HAL_IncTick(); HAL_IncTick();
} }
} }
uint16_t getHandleTemperature() { uint16_t getHandleTemperature() {
int32_t result = getADC(0); int32_t result = getADC(0);
return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems, result); return Utils::InterpolateLookupTable(NTCHandleLookup, NTCHandleLookupItems,
result);
} }
uint16_t getTipInstantTemperature() { return getADC(2); } uint16_t getTipInstantTemperature() {
return getADC(2);
}
uint16_t getTipRawTemp(uint8_t refresh) { uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh) { if (refresh) {
uint16_t lastSample = getTipInstantTemperature(); uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample); rawTempFilter.update(lastSample);
return lastSample; return lastSample;
} else { } else {
return rawTempFilter.average(); return rawTempFilter.average();
} }
} }
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) { uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN // ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there // Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options, // Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467 // ideal term is 467
static uint8_t preFillneeded = 10; static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH]; static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0; static uint8_t index = 0;
if (preFillneeded) { if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1); samples[i] = getADC(1);
preFillneeded--; preFillneeded--;
} }
if (sample) { if (sample) {
samples[index] = getADC(1); samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH; index = (index + 1) % BATTFILTERDEPTH;
} }
uint32_t sum = 0; uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++) for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i]; sum += samples[i];
sum /= BATTFILTERDEPTH; sum /= BATTFILTERDEPTH;
if (divisor == 0) { if (divisor == 0) {
divisor = 1; divisor = 1;
} }
return sum * 4 / divisor; return sum * 4 / divisor;
} }
bool tryBetterPWM(uint8_t pwm) { bool tryBetterPWM(uint8_t pwm) {
// We dont need this for the MHP30 // We dont need this for the MHP30
return false; return false;
} }
void setTipPWM(uint8_t pulse) { void setTipPWM(uint8_t pulse) {
// We can just set the timer directly // We can just set the timer directly
htim3.Instance->CCR1 = pulse; htim3.Instance->CCR1 = pulse;
} }
void unstick_I2C() { void unstick_I2C() {
GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitTypeDef GPIO_InitStruct;
int timeout = 100; int timeout = 100;
int timeout_cnt = 0; int timeout_cnt = 0;
// 1. Clear PE bit. // 1. Clear PE bit.
hi2c1.Instance->CR1 &= ~(0x0001); hi2c1.Instance->CR1 &= ~(0x0001);
/**I2C1 GPIO Configuration /**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA PB7 ------> I2C1_SDA
*/ */
// 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR). // 2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level (Write 1 to GPIOx_ODR).
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin; GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
GPIO_InitStruct.Pin = SDA_Pin; GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) { while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
// Move clock to release I2C // Move clock to release I2C
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
asm("nop"); asm("nop");
asm("nop"); asm("nop");
asm("nop"); asm("nop");
asm("nop"); asm("nop");
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
timeout_cnt++; timeout_cnt++;
if (timeout_cnt > timeout) if (timeout_cnt > timeout)
return; return;
} }
// 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain. // 12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = SCL_Pin; GPIO_InitStruct.Pin = SCL_Pin;
HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = SDA_Pin; GPIO_InitStruct.Pin = SDA_Pin;
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
// 13. Set SWRST bit in I2Cx_CR1 register. // 13. Set SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 |= 0x8000; hi2c1.Instance->CR1 |= 0x8000;
asm("nop"); asm("nop");
// 14. Clear SWRST bit in I2Cx_CR1 register. // 14. Clear SWRST bit in I2Cx_CR1 register.
hi2c1.Instance->CR1 &= ~0x8000; hi2c1.Instance->CR1 &= ~0x8000;
asm("nop"); asm("nop");
// 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register // 15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register
hi2c1.Instance->CR1 |= 0x0001; hi2c1.Instance->CR1 |= 0x0001;
// Call initialization function. // Call initialization function.
HAL_I2C_Init(&hi2c1); HAL_I2C_Init(&hi2c1);
} }
uint8_t getButtonA() { return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0; } uint8_t getButtonA() {
uint8_t getButtonB() { return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0; } return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
1 : 0;
}
uint8_t getButtonB() {
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
1 : 0;
}
void BSPInit(void) {} void BSPInit(void) {
WS2812::init();
}
void reboot() { NVIC_SystemReset(); } void reboot() {
NVIC_SystemReset();
}
void delay_ms(uint16_t count) { HAL_Delay(count); } void delay_ms(uint16_t count) {
HAL_Delay(count);
}
void setPlatePullup(bool pullingUp) { void setPlatePullup(bool pullingUp) {
GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin; GPIO_InitStruct.Pin = PLATE_SENSOR_PULLUP_Pin;
GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Pull = GPIO_NOPULL;
if (pullingUp) { if (pullingUp) {
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port,
} else { PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_SET);
// Hi-z } else {
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; // Hi-z
HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port, PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET); GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
} HAL_GPIO_WritePin(PLATE_SENSOR_PULLUP_GPIO_Port,
HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct); PLATE_SENSOR_PULLUP_Pin, GPIO_PIN_RESET);
}
HAL_GPIO_Init(PLATE_SENSOR_PULLUP_GPIO_Port, &GPIO_InitStruct);
} }
uint16_t tipSenseResistancex10Ohms = 0; uint16_t tipSenseResistancex10Ohms = 0;
bool isTipDisconnected() { bool isTipDisconnected() {
static bool lastTipDisconnectedState = true; static bool lastTipDisconnectedState = true;
static uint16_t adcReadingPD1Set = 0; static uint16_t adcReadingPD1Set = 0;
static TickType_t lastMeas = 0; static TickType_t lastMeas = 0;
// For the MHP30 we want to include a little extra logic in here // For the MHP30 we want to include a little extra logic in here
// As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip // As when the tip is first connected we want to measure the ~100 ohm resistor on the base of the tip
// And likewise if its removed we want to clear that measurement // And likewise if its removed we want to clear that measurement
/* /*
* plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0; * plate_sensor_res = ((adc5_value_PD1_set - adc5_value_PD1_cleared) / (adc5_value_PD1_cleared + 4096 - adc5_value_PD1_set)) * 1000.0;
* */ * */
bool tipDisconnected = getADC(2) > 4090; bool tipDisconnected = getADC(2) > 4090;
// We have to handle here that this ^ will trip while measuring the gain resistor // We have to handle here that this ^ will trip while measuring the gain resistor
if (xTaskGetTickCount() - lastMeas < (TICKS_100MS * 2 + (TICKS_100MS / 2))) { if (xTaskGetTickCount() - lastMeas
tipDisconnected = false; < (TICKS_100MS * 2 + (TICKS_100MS / 2))) {
} tipDisconnected = false;
}
if (tipDisconnected != lastTipDisconnectedState) { if (tipDisconnected != lastTipDisconnectedState) {
if (tipDisconnected) { if (tipDisconnected) {
// Tip is now disconnected // Tip is now disconnected
tipSenseResistancex10Ohms = 0; // zero out the resistance tipSenseResistancex10Ohms = 0; // zero out the resistance
adcReadingPD1Set = 0; adcReadingPD1Set = 0;
lastMeas = 0; lastMeas = 0;
} }
lastTipDisconnectedState = tipDisconnected; lastTipDisconnectedState = tipDisconnected;
} }
if (!tipDisconnected) { if (!tipDisconnected) {
if (tipSenseResistancex10Ohms == 0) { if (tipSenseResistancex10Ohms == 0) {
if (lastMeas == 0) { if (lastMeas == 0) {
lastMeas = xTaskGetTickCount(); lastMeas = xTaskGetTickCount();
setPlatePullup(true); setPlatePullup(true);
} else if (xTaskGetTickCount() - lastMeas > (TICKS_100MS)) { } else if (xTaskGetTickCount() - lastMeas > (TICKS_100MS)) {
lastMeas = xTaskGetTickCount(); lastMeas = xTaskGetTickCount();
// We are sensing the resistance // We are sensing the resistance
if (adcReadingPD1Set == 0) { if (adcReadingPD1Set == 0) {
// We will record the reading for PD1 being set // We will record the reading for PD1 being set
adcReadingPD1Set = getADC(3); adcReadingPD1Set = getADC(3);
setPlatePullup(false); setPlatePullup(false);
} else { } else {
// We have taken reading one // We have taken reading one
uint16_t adcReadingPD1Cleared = getADC(3); uint16_t adcReadingPD1Cleared = getADC(3);
uint32_t a = ((int)adcReadingPD1Set - (int)adcReadingPD1Cleared); uint32_t a = ((int) adcReadingPD1Set
a *= 10000; - (int) adcReadingPD1Cleared);
uint32_t b = ((int)adcReadingPD1Cleared + (32768 - (int)adcReadingPD1Set)); a *= 10000;
if (b) { uint32_t b = ((int) adcReadingPD1Cleared
tipSenseResistancex10Ohms = a / b; + (32768 - (int) adcReadingPD1Set));
} else { if (b) {
tipSenseResistancex10Ohms = adcReadingPD1Set = lastMeas = 0; tipSenseResistancex10Ohms = a / b;
} } else {
if (tipSenseResistancex10Ohms > 1100 || tipSenseResistancex10Ohms < 900) { tipSenseResistancex10Ohms = adcReadingPD1Set =
tipSenseResistancex10Ohms = 0; // out of range lastMeas = 0;
adcReadingPD1Set = 0; }
lastMeas = 0; if (tipSenseResistancex10Ohms > 1100
} || tipSenseResistancex10Ohms < 900) {
} tipSenseResistancex10Ohms = 0; // out of range
} adcReadingPD1Set = 0;
return true; // we fake tip being disconnected until this is measured lastMeas = 0;
} }
} }
}
return true; // we fake tip being disconnected until this is measured
}
}
return tipDisconnected; return tipDisconnected;
} }
void setStatusLED(const enum StatusLED state) { void setStatusLED(const enum StatusLED state) {
WS2812::led_set_color(0, 0xFF, 0, 0); static enum StatusLED lastState = LED_UNKNOWN;
WS2812::led_update(1); if (lastState != state) {
switch (state) {
case LED_UNKNOWN:
case LED_OFF:
WS2812::led_set_color(0, 0, 0, 0);
break;
case LED_STANDBY:
WS2812::led_set_color(0, 0, 0xFF, 0); //green
break;
case LED_HEATING:
WS2812::led_set_color(0, 0, 0, 0xFF); //Blue
break;
case LED_HOT:
WS2812::led_set_color(0, 0xFF, 0, 0); //red
break;
case LED_COOLING_STILL_HOT:
WS2812::led_set_color(0, 0xFF, 0xFF, 0xFF); //white
break;
}
WS2812::led_update();
lastState = state;
}
} }

View File

@@ -16,8 +16,6 @@ DMA_HandleTypeDef hdma_i2c1_rx;
DMA_HandleTypeDef hdma_i2c1_tx; DMA_HandleTypeDef hdma_i2c1_tx;
IWDG_HandleTypeDef hiwdg; IWDG_HandleTypeDef hiwdg;
TIM_HandleTypeDef htim1;
DMA_HandleTypeDef hdma_tim1_ch1;
TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim3;
#define ADC_CHANNELS 4 #define ADC_CHANNELS 4
@@ -31,7 +29,6 @@ static void MX_I2C1_Init(void);
static void MX_IWDG_Init(void); static void MX_IWDG_Init(void);
static void MX_TIM3_Init(void); static void MX_TIM3_Init(void);
static void MX_TIM2_Init(void); static void MX_TIM2_Init(void);
static void MX_TIM1_Init(void);
static void MX_DMA_Init(void); static void MX_DMA_Init(void);
static void MX_GPIO_Init(void); static void MX_GPIO_Init(void);
static void MX_ADC2_Init(void); static void MX_ADC2_Init(void);
@@ -47,7 +44,6 @@ void Setup_HAL() {
MX_ADC2_Init(); MX_ADC2_Init();
MX_TIM3_Init(); MX_TIM3_Init();
MX_TIM2_Init(); MX_TIM2_Init();
MX_TIM1_Init();
MX_IWDG_Init(); MX_IWDG_Init();
HAL_ADC_Start(&hadc2); HAL_ADC_Start(&hadc2);
HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings, HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings,
@@ -91,9 +87,9 @@ void SystemClock_Config(void) {
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; // TIM
// 2,3,4,5,6,7,12,13,14 // 2,3,4,5,6,7,12,13,14
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
@@ -222,70 +218,6 @@ static void MX_IWDG_Init(void) {
#endif #endif
} }
/* TIM1 init function */
void MX_TIM1_Init(void) {
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 42;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
HAL_TIM_Base_Init(&htim1);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig);
HAL_TIM_PWM_Init(&htim1);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1);
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig);
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
/**TIM1 GPIO Configuration
PA8 ------> TIM1_CH1
*/
GPIO_InitStruct.Pin = WS2812_Pin;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct);
__HAL_AFIO_REMAP_TIM1_DISABLE();
}
/* TIM3 init function */ /* TIM3 init function */
static void MX_TIM3_Init(void) { static void MX_TIM3_Init(void) {
TIM_ClockConfigTypeDef sClockSourceConfig; TIM_ClockConfigTypeDef sClockSourceConfig;
@@ -382,9 +314,6 @@ static void MX_DMA_Init(void) {
/* DMA1_Channel1_IRQn interrupt configuration */ /* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 10, 0); HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 10, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 2, 0); // DMA 1 ch2 is used from TIM CH1 for WS2812
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */ /* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0); HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
@@ -438,8 +367,13 @@ static void MX_GPIO_Init(void) {
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
GPIO_InitStruct.Pin = WS2812_Pin;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(WS2812_GPIO_Port, WS2812_Pin, GPIO_PIN_RESET);
// Pull down LCD reset // Pull down LCD reset
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(30); HAL_Delay(30);

View File

@@ -3,7 +3,6 @@
#include "I2C_Wrapper.hpp" #include "I2C_Wrapper.hpp"
#include "QC3.h" #include "QC3.h"
#include "Settings.h" #include "Settings.h"
#include "WS2812.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "fusbpd.h" #include "fusbpd.h"
#include "main.hpp" #include "main.hpp"
@@ -13,13 +12,5 @@
// Initialisation to be performed with scheduler active // Initialisation to be performed with scheduler active
void postRToSInit() { void postRToSInit() {
WS2812::init();
WS2812::led_set_color(0, 0xAA, 0x00, 0x00);
while (true) {
// osDelay(1);
// WS2812::led_set_color(0, 0xFF, 0xFF, 0xFF);
// WS2812::led_update(1);
osDelay(10);
WS2812::led_update(1);
}
} }

View File

@@ -126,20 +126,7 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) {
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim_base) { void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim_base) {
if (htim_base->Instance == TIM1) { if (htim_base->Instance == TIM3) {
__HAL_RCC_TIM1_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
hdma_tim1_ch1.Instance = DMA1_Channel2;
hdma_tim1_ch1.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_tim1_ch1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_tim1_ch1.Init.MemInc = DMA_MINC_ENABLE;
hdma_tim1_ch1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_tim1_ch1.Init.MemDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_tim1_ch1.Init.Mode = DMA_CIRCULAR;
hdma_tim1_ch1.Init.Priority = DMA_PRIORITY_VERY_HIGH;
HAL_DMA_Init(&hdma_tim1_ch1);
__HAL_LINKDMA(htim_base, hdma[TIM_DMA_ID_CC1], hdma_tim1_ch1);
} else if (htim_base->Instance == TIM3) {
__HAL_RCC_TIM3_CLK_ENABLE(); __HAL_RCC_TIM3_CLK_ENABLE();
} else if (htim_base->Instance == TIM2) { } else if (htim_base->Instance == TIM2) {
__HAL_RCC_TIM2_CLK_ENABLE(); __HAL_RCC_TIM2_CLK_ENABLE();

View File

@@ -42,14 +42,11 @@ void DMA1_Channel1_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_adc1); }
// ADC interrupt used for DMA // ADC interrupt used for DMA
void ADC1_2_IRQHandler(void) { HAL_ADC_IRQHandler(&hadc1); } void ADC1_2_IRQHandler(void) { HAL_ADC_IRQHandler(&hadc1); }
// Timer 1 has overflowed, used for HAL ticks //used for hal ticks
void TIM1_UP_IRQHandler(void) { HAL_TIM_IRQHandler(&htim1); }
void TIM4_IRQHandler(void) { HAL_TIM_IRQHandler(&htim4); } void TIM4_IRQHandler(void) { HAL_TIM_IRQHandler(&htim4); }
void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); } void I2C1_EV_IRQHandler(void) { HAL_I2C_EV_IRQHandler(&hi2c1); }
void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); } void I2C1_ER_IRQHandler(void) { HAL_I2C_ER_IRQHandler(&hi2c1); }
void DMA1_Channel2_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_tim1_ch1); }
void DMA1_Channel6_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_tx); } void DMA1_Channel6_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_tx); }
void DMA1_Channel7_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_rx); } void DMA1_Channel7_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_i2c1_rx); }

View File

@@ -5,178 +5,106 @@
* Author: Ralim * Author: Ralim
*/ */
#include "FreeRTOS.h"
#include "task.h"
#include <WS2812.h> #include <WS2812.h>
#include "Pins.h"
#include <string.h> #include <string.h>
uint8_t WS2812::leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT]; uint8_t WS2812::leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
volatile uint16_t WS2812::tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
volatile uint8_t WS2812::is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
volatile uint8_t WS2812::is_updating; /*!< Is updating in progress? */
volatile uint32_t WS2812::current_led; /*!< Current LED number we are sending */
void WS2812::init(void) { void WS2812::init(void) {
memset(leds_colors, 0, sizeof(leds_colors)); memset(leds_colors, 0, sizeof(leds_colors));
hdma_tim1_ch1.XferHalfCpltCallback = DMAHalfComplete;
hdma_tim1_ch1.XferCpltCallback = DMAComplete;
htim1.Instance->CCR1 = htim1.Instance->ARR / 2 - 1;
htim1.Instance->DIER |= TIM_DIER_CC1DE;
} }
uint8_t WS2812::led_update(uint8_t block) { void WS2812::led_update() {
if (is_updating) { /* Check if update in progress already */ __disable_irq();
return 0; //Bitbang it out as our cpu irq latency is too high
} for (unsigned int i = 0; i < sizeof(leds_colors); i++) {
is_updating = 1; /* We are now updating */ //Shove out MSB first
for (int x = 0; x < 8; x++) {
WS2812_GPIO_Port->BSRR = WS2812_Pin;
if ((leds_colors[i] & (1 << (7 - x))) == (1 << (7 - x))) {
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
} else {
led_start_reset_pulse(1); /* Start reset pulse */ __asm__ __volatile__("nop");
if (block) { __asm__ __volatile__("nop");
while (!led_is_update_finished()) { __asm__ __volatile__("nop");
vTaskDelay(1); __asm__ __volatile__("nop");
}; /* Wait to finish */ __asm__ __volatile__("nop");
} __asm__ __volatile__("nop");
return 1; }
WS2812_GPIO_Port->BSRR = (uint32_t) WS2812_Pin << 16u;
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
__asm__ __volatile__("nop");
}
}
__enable_irq();
} }
void WS2812::led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b) { void WS2812::led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b) {
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r; leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = g;
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g; leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = r;
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b; leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
} }
void WS2812::led_set_color_all(uint8_t r, uint8_t g, uint8_t b) { void WS2812::led_set_color_all(uint8_t r, uint8_t g, uint8_t b) {
for (int index = 0; index < WS2812_LED_COUNT; index++) { for (int index = 0; index < WS2812_LED_COUNT; index++) {
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r; leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = g;
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g; leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = r;
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b; leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
} }
}
uint8_t WS2812::led_is_update_finished(void) { return !is_updating; }
void WS2812::led_start_reset_pulse(uint8_t num) {
is_reset_pulse = num; /* Set reset pulse flag */
memset((void *)tmp_led_data, 0, sizeof(tmp_led_data)); /* Set all bytes to 0 to achieve 50us pulse */
if (num == 1) {
tmp_led_data[0] = (htim1.Instance->ARR * 2) / 3; // start with half width pulse
}
/* Set DMA to normal mode, set memory to beginning of data and length to 40 elements */
/* 800kHz PWM x 40 samples = ~50us pulse low */
hdma_tim1_ch1.Instance->CCR &= (~DMA_CCR_CIRC); // clear circular flag -> normal mode
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t)tmp_led_data, (uint32_t)&htim1.Instance->CCR1, 2 * WS2812_RAW_BYTES_PER_LED);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
}
void WS2812::DMAHalfComplete(DMA_HandleTypeDef *hdma) { led_update_sequence(0); }
void WS2812::DMAComplete(DMA_HandleTypeDef *hdma) { led_update_sequence(1); }
void WS2812::led_update_sequence(uint8_t tc) {
tc = !!tc; /* Convert to 1 or 0 value only */
/* Check for reset pulse at the end of PWM stream */
if (is_reset_pulse == 2) { /* Check for reset pulse at the end */
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
HAL_DMA_Abort(&hdma_tim1_ch1);
is_updating = 0; /* We are not updating anymore */
return;
}
/* Check for reset pulse on beginning of PWM stream */
if (is_reset_pulse == 1) { /* Check if we finished with reset pulse */
/*
* When reset pulse is active, we have to wait full DMA response,
* before we can start modifying array which is shared with DMA and PWM
*/
if (!tc) { /* We must wait for transfer complete */
return; /* Return and wait to finish */
}
/* Disable timer output and disable DMA stream */
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
HAL_DMA_Abort(&hdma_tim1_ch1);
is_reset_pulse = 0; /* Not in reset pulse anymore */
current_led = 0; /* Reset current led */
} else {
/*
* When we are not in reset mode,
* go to next led and process data for it
*/
current_led++; /* Go to next LED */
}
/*
* This part is used to prepare data for "next" led,
* for which update will start once current transfer stops in circular mode
*/
if (current_led < WS2812_LED_COUNT) {
/*
* If we are preparing data for first time (current_led == 0)
* or if there was no TC event (it was HT):
*
* - Prepare first part of array, because either there is no transfer
* or second part (from HT to TC) is now in process for PWM transfer
*
* In other case (TC = 1)
*/
if (current_led == 0 || !tc) {
led_fill_led_pwm_data(current_led, &tmp_led_data[0]);
} else {
led_fill_led_pwm_data(current_led, &tmp_led_data[WS2812_RAW_BYTES_PER_LED]);
}
/*
* If we are preparing first led (current_led = 0), then:
*
* - We setup first part of array for first led,
* - We have to prepare second part for second led to have one led prepared in advance
* - Set DMA to circular mode and start the transfer + PWM output
*/
if (current_led == 0) {
current_led++; /* Go to next LED */
led_fill_led_pwm_data(current_led, &tmp_led_data[WS2812_RAW_BYTES_PER_LED]); /* Prepare second LED too */
hdma_tim1_ch1.Instance->CCR |= (DMA_CCR_CIRC); // set circular flag for circular mode
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t)tmp_led_data, (uint32_t)&htim1.Instance->CCR1, 2 * WS2812_RAW_BYTES_PER_LED);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
}
/*
* When we reached all leds, we have to wait to transmit data for all leds before we can disable DMA and PWM:
*
* - If TC event is enabled and we have EVEN number of LEDS (2, 4, 6, ...)
* - If HT event is enabled and we have ODD number of LEDS (1, 3, 5, ...)
*/
} else if ((!tc && (WS2812_LED_COUNT & 0x01)) || (tc && !(WS2812_LED_COUNT & 0x01))) {
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
HAL_DMA_Abort(&hdma_tim1_ch1);
/* It is time to send final reset pulse, 50us at least */
led_start_reset_pulse(2); /* Start reset pulse at the end */
}
}
void WS2812::led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr) {
size_t i;
uint16_t OnOffValues[] = {2 * htim1.Instance->ARR / 3, (4 * htim1.Instance->ARR) / 3};
if (ledx < WS2812_LED_COUNT) {
for (i = 0; i < 8; i++) {
// Also unmux RGB -> GRB in the index order here
ptr[i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 1] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
ptr[8 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 0] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
ptr[16 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 2] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
#if WS2812_LED_CHANNEL_COUNT == 4
ptr[24 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 3] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
#endif
}
} else {
// Fill with zero?
}
} }

View File

@@ -11,7 +11,7 @@
#ifndef CORE_DRIVERS_WS2812_H_ #ifndef CORE_DRIVERS_WS2812_H_
#define CORE_DRIVERS_WS2812_H_ #define CORE_DRIVERS_WS2812_H_
#ifndef WS2812_LED_COUNT #ifndef WS2812_LED_COUNT
#define WS2812_LED_COUNT 3 #define WS2812_LED_COUNT 2
#endif #endif
#ifndef WS2812_LED_CHANNEL_COUNT #ifndef WS2812_LED_CHANNEL_COUNT
#define WS2812_LED_CHANNEL_COUNT 3 #define WS2812_LED_CHANNEL_COUNT 3
@@ -19,23 +19,14 @@
#define WS2812_RAW_BYTES_PER_LED (WS2812_LED_CHANNEL_COUNT * 8) #define WS2812_RAW_BYTES_PER_LED (WS2812_LED_CHANNEL_COUNT * 8)
class WS2812 { class WS2812 {
public: public:
static void init(void); static void init(void);
static uint8_t led_update(uint8_t block); static void led_update();
static void led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b); static void led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b);
static void led_set_color_all(uint8_t r, uint8_t g, uint8_t b); static void led_set_color_all(uint8_t r, uint8_t g, uint8_t b);
private: private:
static uint8_t led_is_update_finished(void);
static void led_start_reset_pulse(uint8_t num); static uint8_t leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
static void DMAHalfComplete(DMA_HandleTypeDef *hdma);
static void DMAComplete(DMA_HandleTypeDef *hdma);
static void led_update_sequence(uint8_t tc);
static void led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr);
static uint8_t leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
static volatile uint16_t tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
static volatile uint8_t is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
static volatile uint8_t is_updating; /*!< Is updating in progress? */
static volatile uint32_t current_led; /*!< Current LED number we are sending */
}; };
#endif /* CORE_DRIVERS_WS2812_H_ */ #endif /* CORE_DRIVERS_WS2812_H_ */

File diff suppressed because it is too large Load Diff