This commit is contained in:
Ben V. Brown
2018-11-11 09:28:13 +11:00
2 changed files with 57 additions and 49 deletions

View File

@@ -263,36 +263,36 @@ static void gui_drawBatteryIcon() {
// we need to calculate which of the 10 levels they are on
uint8_t cellCount = systemSettings.cutoutSetting + 2;
uint16_t cellV = getInputVoltageX10(systemSettings.voltageDiv)
/ cellCount;
/ cellCount;
// Should give us approx cell voltage X10
// Range is 42 -> 33 = 9 steps therefore we will use battery 1-10
if (cellV < 33)
cellV = 33;
cellV -= 33; // Should leave us a number of 0-9
cellV = 33;
cellV -= 33;// Should leave us a number of 0-9
if (cellV > 9)
cellV = 9;
cellV = 9;
OLED::drawBattery(cellV + 1);
} else
OLED::drawSymbol(15); // Draw the DC Logo
OLED::drawSymbol(15); // Draw the DC Logo
#else
// On TS80 we replace this symbol with the voltage we are operating on
// If <9V then show single digit, if not show duals
uint8_t V = getInputVoltageX10(systemSettings.voltageDiv);
if (V % 10 >= 5)
V = V / 10 + 1;// round up
else
V = V / 10;
if (V >= 10) {
int16_t xPos = OLED::getCursorX();
OLED::setFont(1);
OLED::printNumber(1, 1);
OLED::setCursor(xPos, 8);
OLED::printNumber(V % 10, 1);
OLED::setFont(0);
OLED::setCursor(xPos+12,0); // need to reset this as if we drew a wide char
} else {
OLED::printNumber(V, 1);
}
// On TS80 we replace this symbol with the voltage we are operating on
// If <9V then show single digit, if not show duals
uint8_t V = getInputVoltageX10(systemSettings.voltageDiv);
if (V % 10 >= 5)
V = V / 10 + 1; // round up
else
V = V / 10;
if (V >= 10) {
int16_t xPos = OLED::getCursorX();
OLED::setFont(1);
OLED::printNumber(1, 1);
OLED::setCursor(xPos, 8);
OLED::printNumber(V % 10, 1);
OLED::setFont(0);
OLED::setCursor(xPos + 12, 0); // need to reset this as if we drew a wide char
} else {
OLED::printNumber(V, 1);
}
#endif
}
static void gui_solderingTempAdjust() {
@@ -364,7 +364,7 @@ static void gui_solderingTempAdjust() {
#ifdef MODEL_TS80
if (!OLED::getRotation())
#else
if (OLED::getRotation())
if (OLED::getRotation())
#endif
OLED::drawChar('-');
else
@@ -380,7 +380,7 @@ static void gui_solderingTempAdjust() {
#ifdef MODEL_TS80
if (!OLED::getRotation())
#else
if (OLED::getRotation())
if (OLED::getRotation())
#endif
OLED::drawChar('+');
else
@@ -407,7 +407,7 @@ static int gui_SolderingSleepingMode() {
|| (xTaskGetTickCount() - lastButtonTime < 100))
return 0; // user moved or pressed a button, go back to soldering
#ifdef MODEL_TS100
if (checkVoltageForExit())
if (checkVoltageForExit())
return 1; // return non-zero on error
#endif
if (systemSettings.temperatureInF) {
@@ -661,7 +661,7 @@ __DATE__, "Heap: ", "HWMG: ", "HWMP: ", "HWMM: ", "Time: ", "Move: ", "RTip: ",
#else
"Ralim-",
#endif
};
};
void showVersion(void) {
uint8_t screen = 0;
@@ -671,9 +671,9 @@ void showVersion(void) {
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::setFont(1); // small font
#ifdef MODEL_TS100
OLED::print((char *) "V2.06 TS100"); // Print version number
OLED::print((char *) "V2.06 TS100"); // Print version number
#else
OLED::print((char *) "V2.06 TS80"); // Print version number
OLED::print((char *) "V2.06 TS80"); // Print version number
#endif
OLED::setCursor(0, 8); // second line
OLED::print(HEADERS[screen]);
@@ -713,7 +713,7 @@ void showVersion(void) {
break;
case 12:
#ifdef MODEL_TS80
OLED::printNumber(idealQCVoltage,3);
OLED::printNumber(idealQCVoltage, 3);
#else
OLED::print("Tek.com");
#endif
@@ -803,8 +803,9 @@ void startGUITask(void const *argument __unused) {
#ifdef MODEL_TS80
//Here we re-check for tip presence
if (idealQCVoltage < 90)
idealQCVoltage = calculateMaxVoltage(systemSettings.cutoutSetting);
seekQC(idealQCVoltage,systemSettings.voltageDiv);
idealQCVoltage = calculateMaxVoltage(
systemSettings.cutoutSetting);
seekQC(idealQCVoltage, systemSettings.voltageDiv);
#endif
gui_solderingMode(0); // enter soldering mode
buttonLockout = true;
@@ -866,7 +867,7 @@ void startGUITask(void const *argument __unused) {
#ifdef MODEL_TS80
if (!OLED::getRotation()) {
#else
if (OLED::getRotation()) {
if (OLED::getRotation()) {
#endif
OLED::drawArea(12, 0, 84, 16, idleScreenBG);
OLED::setCursor(0, 0);
@@ -887,7 +888,7 @@ void startGUITask(void const *argument __unused) {
#ifdef MODEL_TS80
if (!OLED::getRotation()) {
#else
if (OLED::getRotation()) {
if (OLED::getRotation()) {
#endif
// in right handed mode we want to draw over the first part
OLED::fillArea(55, 0, 41, 16, 0); // clear the area for the temp
@@ -916,15 +917,15 @@ void startPIDTask(void const *argument __unused) {
* We take the current tip temperature & evaluate the next step for the tip
* control PWM.
*/
setTipMilliWatts(0); // disable the output driver if the output is set to be off
setTipMilliWatts(0); // disable the output driver if the output is set to be off
#ifdef MODEL_TS80
idealQCVoltage = calculateMaxVoltage(systemSettings.cutoutSetting);
#endif
uint8_t rawC = ctoTipMeasurement(101) - ctoTipMeasurement(100); // 1*C change in raw.
uint8_t rawC = ctoTipMeasurement(101) - ctoTipMeasurement(100); // 1*C change in raw.
currentlyActiveTemperatureTarget = 0; // Force start with no output (off). If in sleep / soldering this will
// be over-ridden rapidly
history<int16_t> tempError = {{0}, 0, 0};
history<int16_t> tempError = { { 0 }, 0, 0 };
pidTaskNotification = xTaskGetCurrentTaskHandle();
for (;;) {
@@ -943,7 +944,8 @@ void startPIDTask(void const *argument __unused) {
// to be unstable. Use a rolling average to dampen it.
// We overshoot by roughly 1/2 of 1 degree Fahrenheit.
// This helps stabilize the display.
int32_t tError = currentlyActiveTemperatureTarget - rawTemp + rawC/4;
int32_t tError = currentlyActiveTemperatureTarget - rawTemp
+ rawC / 4;
tError = tError > INT16_MAX ? INT16_MAX : tError;
tError = tError < INT16_MIN ? INT16_MIN : tError;
tempError.update(tError);
@@ -954,17 +956,21 @@ void startPIDTask(void const *argument __unused) {
// P term - total power needed to hit target temp next cycle.
// thermal mass = 1690 milliJ/*C for my tip.
// = Watts*Seconds to raise Temp from room temp to +100*C, divided by 100*C.
// divided by 20 to let I term dominate near set point.
// I should retune this, but don't want to do it until
// the feed-forward temp adjustment is in place.
// we divide milliWattsNeeded by 20 to let the I term dominate near the set point.
// This is necessary because of the temp noise and thermal lag in the system.
// Once we have feed-forward temp estimation we should be able to better tune this.
#ifdef MODEL_TS100
const uint16_t mass = 1690 / 20;
const uint16_t mass = 1690 / 20; // divide here so division is compile-time.
#endif
#ifdef MODEL_TS80
const uint16_t mass = 1690 / 50;
#endif
int32_t milliWattsNeeded = tempToMilliWatts(tempError.average(), mass, rawC);
int32_t milliWattsNeeded = tempToMilliWatts(tempError.average(),
mass, rawC);
// note that milliWattsNeeded is sometimes negative, this counters overshoot
// from I term's inertia.
milliWattsOut += milliWattsNeeded;
// I term - energy needed to compensate for heat loss.
@@ -1000,9 +1006,9 @@ void startMOVTask(void const *argument __unused) {
#ifdef MODEL_TS80
startQC(systemSettings.voltageDiv);
while (idealQCVoltage == 0)
osDelay(20); // To ensure we return after idealQCVoltage is setup
osDelay(20); // To ensure we return after idealQCVoltage is setup
seekQC(idealQCVoltage,systemSettings.voltageDiv);// this will move the QC output to the preferred voltage to start with
seekQC(idealQCVoltage, systemSettings.voltageDiv); // this will move the QC output to the preferred voltage to start with
#else
osDelay(250); // wait for accelerometer to stabilize
@@ -1088,9 +1094,9 @@ void startMOVTask(void const *argument __unused) {
osDelay(100); // Slow down update rate
#ifdef MODEL_TS80
if (currentlyActiveTemperatureTarget) {
seekQC(idealQCVoltage,systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop
}
if (currentlyActiveTemperatureTarget) {
seekQC(idealQCVoltage, systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop
}
#endif
}
}

View File

@@ -16,7 +16,9 @@ history<uint16_t, oscillationPeriod> milliWattHistory = {{0}, 0, 0};
int32_t tempToMilliWatts(int32_t rawTemp, uint16_t mass, uint8_t rawC) {
// mass is in milliJ/*C, rawC is raw per degree C
// mass is in milliJ/*C, rawC is raw per degree C
// returns milliWatts needed to raise/lower a mass by rawTemp
// degrees in one cycle.
int32_t milliJoules = mass * rawTemp / rawC;
return milliJoules * hz;
}