mirror of
https://github.com/Ralim/IronOS.git
synced 2025-02-26 07:53:55 +00:00
LED iffy (unstable timer?)
This commit is contained in:
@@ -16,10 +16,10 @@ DMA_HandleTypeDef hdma_i2c1_rx;
|
||||
DMA_HandleTypeDef hdma_i2c1_tx;
|
||||
|
||||
IWDG_HandleTypeDef hiwdg;
|
||||
TIM_HandleTypeDef htim1;
|
||||
DMA_HandleTypeDef hdma_tim1_ch1;
|
||||
TIM_HandleTypeDef htim2;
|
||||
TIM_HandleTypeDef htim3;
|
||||
TIM_HandleTypeDef htim1;
|
||||
DMA_HandleTypeDef hdma_tim1_ch1;
|
||||
TIM_HandleTypeDef htim2;
|
||||
TIM_HandleTypeDef htim3;
|
||||
#define ADC_CHANNELS 4
|
||||
#define ADC_SAMPLES 16
|
||||
uint32_t ADCReadings[ADC_SAMPLES * ADC_CHANNELS]; // room for 32 lots of the pair of readings
|
||||
@@ -35,422 +35,415 @@ static void MX_TIM1_Init(void);
|
||||
static void MX_DMA_Init(void);
|
||||
static void MX_GPIO_Init(void);
|
||||
static void MX_ADC2_Init(void);
|
||||
void Setup_HAL() {
|
||||
SystemClock_Config();
|
||||
void Setup_HAL() {
|
||||
SystemClock_Config();
|
||||
|
||||
__HAL_AFIO_REMAP_SWJ_NOJTAG();
|
||||
__HAL_AFIO_REMAP_SWJ_NOJTAG();
|
||||
|
||||
MX_GPIO_Init();
|
||||
MX_DMA_Init();
|
||||
MX_I2C1_Init();
|
||||
MX_ADC1_Init();
|
||||
MX_ADC2_Init();
|
||||
MX_TIM3_Init();
|
||||
MX_TIM2_Init();
|
||||
MX_TIM1_Init();
|
||||
MX_IWDG_Init();
|
||||
HAL_ADC_Start(&hadc2);
|
||||
HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings,
|
||||
(ADC_SAMPLES * ADC_CHANNELS)); // start DMA of normal readings
|
||||
// HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings
|
||||
// HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings
|
||||
MX_GPIO_Init();
|
||||
MX_DMA_Init();
|
||||
MX_I2C1_Init();
|
||||
MX_ADC1_Init();
|
||||
MX_ADC2_Init();
|
||||
MX_TIM3_Init();
|
||||
MX_TIM2_Init();
|
||||
MX_TIM1_Init();
|
||||
MX_IWDG_Init();
|
||||
HAL_ADC_Start(&hadc2);
|
||||
HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings,
|
||||
(ADC_SAMPLES * ADC_CHANNELS)); // start DMA of normal readings
|
||||
// HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings
|
||||
// HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings
|
||||
}
|
||||
|
||||
// channel 0 -> temperature sensor, 1-> VIN, 2-> tip
|
||||
uint16_t getADC(uint8_t channel) {
|
||||
uint32_t sum = 0;
|
||||
for (uint8_t i = 0; i < ADC_SAMPLES; i++) {
|
||||
uint16_t adc1Sample = ADCReadings[channel + (i * ADC_CHANNELS)];
|
||||
uint16_t adc2Sample = ADCReadings[channel + (i * ADC_CHANNELS)] >> 16;
|
||||
uint32_t sum = 0;
|
||||
for (uint8_t i = 0; i < ADC_SAMPLES; i++) {
|
||||
uint16_t adc1Sample = ADCReadings[channel + (i * ADC_CHANNELS)];
|
||||
uint16_t adc2Sample = ADCReadings[channel + (i * ADC_CHANNELS)] >> 16;
|
||||
|
||||
sum += (adc1Sample + adc2Sample);
|
||||
}
|
||||
return sum >> 2;
|
||||
sum += (adc1Sample + adc2Sample);
|
||||
}
|
||||
return sum >> 2;
|
||||
}
|
||||
|
||||
/** System Clock Configuration
|
||||
*/
|
||||
void SystemClock_Config(void) {
|
||||
RCC_OscInitTypeDef RCC_OscInitStruct;
|
||||
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
||||
RCC_PeriphCLKInitTypeDef PeriphClkInit;
|
||||
RCC_OscInitTypeDef RCC_OscInitStruct;
|
||||
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
||||
RCC_PeriphCLKInitTypeDef PeriphClkInit;
|
||||
|
||||
/**Initializes the CPU, AHB and APB busses clocks
|
||||
*/
|
||||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI
|
||||
| RCC_OSCILLATORTYPE_LSI;
|
||||
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
|
||||
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
|
||||
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
|
||||
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
||||
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
|
||||
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64MHz
|
||||
HAL_RCC_OscConfig(&RCC_OscInitStruct);
|
||||
/**Initializes the CPU, AHB and APB busses clocks
|
||||
*/
|
||||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSI;
|
||||
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
|
||||
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
|
||||
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
|
||||
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
||||
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
|
||||
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64MHz
|
||||
HAL_RCC_OscConfig(&RCC_OscInitStruct);
|
||||
|
||||
/**Initializes the CPU, AHB and APB busses clocks
|
||||
*/
|
||||
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
|
||||
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
||||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
||||
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
||||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM
|
||||
// 2,3,4,5,6,7,12,13,14
|
||||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc
|
||||
/**Initializes the CPU, AHB and APB busses clocks
|
||||
*/
|
||||
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
||||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
||||
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
||||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM
|
||||
// 2,3,4,5,6,7,12,13,14
|
||||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc
|
||||
|
||||
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
|
||||
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
|
||||
|
||||
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
|
||||
PeriphClkInit.AdcClockSelection = RCC_CFGR_ADCPRE_DIV8; // 6 or 8 are the only non overclocked options
|
||||
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
|
||||
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
|
||||
PeriphClkInit.AdcClockSelection = RCC_CFGR_ADCPRE_DIV8; // 6 or 8 are the only non overclocked options
|
||||
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
|
||||
|
||||
/**Configure the Systick interrupt time
|
||||
*/
|
||||
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
|
||||
/**Configure the Systick interrupt time
|
||||
*/
|
||||
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
|
||||
|
||||
/**Configure the Systick
|
||||
*/
|
||||
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
|
||||
/**Configure the Systick
|
||||
*/
|
||||
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
|
||||
|
||||
/* SysTick_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
|
||||
/* SysTick_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
|
||||
}
|
||||
|
||||
/* ADC1 init function */
|
||||
static void MX_ADC1_Init(void) {
|
||||
ADC_MultiModeTypeDef multimode;
|
||||
ADC_MultiModeTypeDef multimode;
|
||||
|
||||
ADC_ChannelConfTypeDef sConfig;
|
||||
/**Common config
|
||||
*/
|
||||
hadc1.Instance = ADC1;
|
||||
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
|
||||
hadc1.Init.ContinuousConvMode = ENABLE;
|
||||
hadc1.Init.DiscontinuousConvMode = DISABLE;
|
||||
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
|
||||
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
||||
hadc1.Init.NbrOfConversion = ADC_CHANNELS;
|
||||
HAL_ADC_Init(&hadc1);
|
||||
ADC_ChannelConfTypeDef sConfig;
|
||||
/**Common config
|
||||
*/
|
||||
hadc1.Instance = ADC1;
|
||||
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
|
||||
hadc1.Init.ContinuousConvMode = ENABLE;
|
||||
hadc1.Init.DiscontinuousConvMode = DISABLE;
|
||||
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
|
||||
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
||||
hadc1.Init.NbrOfConversion = ADC_CHANNELS;
|
||||
HAL_ADC_Init(&hadc1);
|
||||
|
||||
/**Configure the ADC multi-mode
|
||||
*/
|
||||
multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT;
|
||||
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
|
||||
/**Configure the ADC multi-mode
|
||||
*/
|
||||
multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT;
|
||||
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
|
||||
|
||||
/**Configure Regular Channel
|
||||
*/
|
||||
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
|
||||
/**Configure Regular Channel
|
||||
*/
|
||||
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
|
||||
|
||||
sConfig.Channel = TMP36_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_1;
|
||||
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
|
||||
sConfig.Channel = TMP36_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_1;
|
||||
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
|
||||
|
||||
/**Configure Regular Channel
|
||||
*/
|
||||
sConfig.Channel = VIN_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_2;
|
||||
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
|
||||
/**Configure Regular Channel
|
||||
*/
|
||||
sConfig.Channel = VIN_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_2;
|
||||
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
|
||||
|
||||
sConfig.Channel = TIP_TEMP_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_3;
|
||||
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
|
||||
sConfig.Channel = TIP_TEMP_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_3;
|
||||
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
|
||||
|
||||
sConfig.Channel = PLATE_SENSOR_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_4;
|
||||
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
|
||||
sConfig.Channel = PLATE_SENSOR_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_4;
|
||||
HAL_ADC_ConfigChannel(&hadc1, &sConfig);
|
||||
|
||||
SET_BIT(hadc1.Instance->CR1, (ADC_CR1_EOSIE)); // Enable end of Normal
|
||||
// Run ADC internal calibration
|
||||
while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK)
|
||||
;
|
||||
SET_BIT(hadc1.Instance->CR1, (ADC_CR1_EOSIE)); // Enable end of Normal
|
||||
// Run ADC internal calibration
|
||||
while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK)
|
||||
;
|
||||
}
|
||||
|
||||
/* ADC2 init function */
|
||||
static void MX_ADC2_Init(void) {
|
||||
ADC_ChannelConfTypeDef sConfig;
|
||||
ADC_ChannelConfTypeDef sConfig;
|
||||
|
||||
/**Common config
|
||||
*/
|
||||
hadc2.Instance = ADC2;
|
||||
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
|
||||
hadc2.Init.ContinuousConvMode = ENABLE;
|
||||
hadc2.Init.DiscontinuousConvMode = DISABLE;
|
||||
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
|
||||
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
||||
hadc2.Init.NbrOfConversion = ADC_CHANNELS;
|
||||
HAL_ADC_Init(&hadc2);
|
||||
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
|
||||
/**Common config
|
||||
*/
|
||||
hadc2.Instance = ADC2;
|
||||
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
|
||||
hadc2.Init.ContinuousConvMode = ENABLE;
|
||||
hadc2.Init.DiscontinuousConvMode = DISABLE;
|
||||
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
|
||||
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
||||
hadc2.Init.NbrOfConversion = ADC_CHANNELS;
|
||||
HAL_ADC_Init(&hadc2);
|
||||
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
|
||||
|
||||
/**Configure Regular Channel
|
||||
*/
|
||||
sConfig.Channel = TMP36_ADC2_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_1;
|
||||
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
|
||||
/**Configure Regular Channel
|
||||
*/
|
||||
sConfig.Channel = TMP36_ADC2_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_1;
|
||||
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
|
||||
|
||||
sConfig.Channel = VIN_ADC2_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_2;
|
||||
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
|
||||
sConfig.Channel = TIP_TEMP_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_3;
|
||||
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
|
||||
sConfig.Channel = PLATE_SENSOR_ADC2_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_4;
|
||||
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
|
||||
sConfig.Channel = VIN_ADC2_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_2;
|
||||
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
|
||||
sConfig.Channel = TIP_TEMP_ADC1_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_3;
|
||||
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
|
||||
sConfig.Channel = PLATE_SENSOR_ADC2_CHANNEL;
|
||||
sConfig.Rank = ADC_REGULAR_RANK_4;
|
||||
HAL_ADC_ConfigChannel(&hadc2, &sConfig);
|
||||
|
||||
// Run ADC internal calibration
|
||||
while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK)
|
||||
;
|
||||
// Run ADC internal calibration
|
||||
while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK)
|
||||
;
|
||||
}
|
||||
/* I2C1 init function */
|
||||
static void MX_I2C1_Init(void) {
|
||||
hi2c1.Instance = I2C1;
|
||||
hi2c1.Init.ClockSpeed = 300000;
|
||||
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
|
||||
hi2c1.Init.OwnAddress1 = 0;
|
||||
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
||||
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
|
||||
hi2c1.Init.OwnAddress2 = 0;
|
||||
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
|
||||
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
|
||||
HAL_I2C_Init(&hi2c1);
|
||||
hi2c1.Instance = I2C1;
|
||||
hi2c1.Init.ClockSpeed = 300000;
|
||||
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
|
||||
hi2c1.Init.OwnAddress1 = 0;
|
||||
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
||||
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
|
||||
hi2c1.Init.OwnAddress2 = 0;
|
||||
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
|
||||
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
|
||||
HAL_I2C_Init(&hi2c1);
|
||||
}
|
||||
|
||||
/* IWDG init function */
|
||||
static void MX_IWDG_Init(void) {
|
||||
hiwdg.Instance = IWDG;
|
||||
hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
|
||||
hiwdg.Init.Reload = 100;
|
||||
hiwdg.Instance = IWDG;
|
||||
hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
|
||||
hiwdg.Init.Reload = 100;
|
||||
#ifndef SWD_ENABLE
|
||||
HAL_IWDG_Init(&hiwdg);
|
||||
HAL_IWDG_Init(&hiwdg);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* TIM1 init function */
|
||||
void MX_TIM1_Init(void) {
|
||||
|
||||
/* USER CODE BEGIN TIM1_Init 0 */
|
||||
/* USER CODE BEGIN TIM1_Init 0 */
|
||||
|
||||
/* USER CODE END TIM1_Init 0 */
|
||||
/* USER CODE END TIM1_Init 0 */
|
||||
|
||||
TIM_ClockConfigTypeDef sClockSourceConfig = { 0 };
|
||||
TIM_MasterConfigTypeDef sMasterConfig = { 0 };
|
||||
TIM_OC_InitTypeDef sConfigOC = { 0 };
|
||||
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = { 0 };
|
||||
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
|
||||
TIM_MasterConfigTypeDef sMasterConfig = {0};
|
||||
TIM_OC_InitTypeDef sConfigOC = {0};
|
||||
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
|
||||
|
||||
/* USER CODE BEGIN TIM1_Init 1 */
|
||||
/* USER CODE BEGIN TIM1_Init 1 */
|
||||
|
||||
/* USER CODE END TIM1_Init 1 */
|
||||
htim1.Instance = TIM1;
|
||||
htim1.Init.Prescaler = 0;
|
||||
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim1.Init.Period = 40;
|
||||
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim1.Init.RepetitionCounter = 0;
|
||||
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
|
||||
HAL_TIM_Base_Init(&htim1);
|
||||
/* USER CODE END TIM1_Init 1 */
|
||||
htim1.Instance = TIM1;
|
||||
htim1.Init.Prescaler = 0;
|
||||
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim1.Init.Period = 42;
|
||||
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
htim1.Init.RepetitionCounter = 0;
|
||||
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
|
||||
HAL_TIM_Base_Init(&htim1);
|
||||
|
||||
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
||||
HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig);
|
||||
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
||||
HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig);
|
||||
|
||||
HAL_TIM_PWM_Init(&htim1);
|
||||
HAL_TIM_PWM_Init(&htim1);
|
||||
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig);
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig);
|
||||
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
|
||||
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
||||
HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1);
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
|
||||
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
|
||||
HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1);
|
||||
|
||||
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
|
||||
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
|
||||
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
|
||||
sBreakDeadTimeConfig.DeadTime = 0;
|
||||
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
|
||||
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
|
||||
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
|
||||
HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig);
|
||||
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
|
||||
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
|
||||
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
|
||||
sBreakDeadTimeConfig.DeadTime = 0;
|
||||
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
|
||||
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
|
||||
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
|
||||
HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig);
|
||||
|
||||
__HAL_RCC_GPIOA_CLK_ENABLE();
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
/**TIM1 GPIO Configuration
|
||||
PA8 ------> TIM1_CH1
|
||||
*/
|
||||
GPIO_InitStruct.Pin = WS2812_Pin;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct);
|
||||
__HAL_AFIO_REMAP_TIM1_DISABLE();
|
||||
__HAL_RCC_GPIOA_CLK_ENABLE();
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
/**TIM1 GPIO Configuration
|
||||
PA8 ------> TIM1_CH1
|
||||
*/
|
||||
GPIO_InitStruct.Pin = WS2812_Pin;
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
HAL_GPIO_Init(WS2812_GPIO_Port, &GPIO_InitStruct);
|
||||
__HAL_AFIO_REMAP_TIM1_DISABLE();
|
||||
}
|
||||
|
||||
/* TIM3 init function */
|
||||
static void MX_TIM3_Init(void) {
|
||||
TIM_ClockConfigTypeDef sClockSourceConfig;
|
||||
TIM_MasterConfigTypeDef sMasterConfig;
|
||||
TIM_OC_InitTypeDef sConfigOC;
|
||||
TIM_ClockConfigTypeDef sClockSourceConfig;
|
||||
TIM_MasterConfigTypeDef sMasterConfig;
|
||||
TIM_OC_InitTypeDef sConfigOC;
|
||||
|
||||
htim3.Instance = TIM3;
|
||||
htim3.Init.Prescaler = 1;
|
||||
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim3.Init.Period = 255; //
|
||||
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 4mhz before div
|
||||
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; // Preload the ARR register (though we dont use this)
|
||||
HAL_TIM_Base_Init(&htim3);
|
||||
htim3.Instance = TIM3;
|
||||
htim3.Init.Prescaler = 1;
|
||||
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim3.Init.Period = 255; //
|
||||
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 4mhz before div
|
||||
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; // Preload the ARR register (though we dont use this)
|
||||
HAL_TIM_Base_Init(&htim3);
|
||||
|
||||
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
||||
HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig);
|
||||
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
||||
HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig);
|
||||
|
||||
HAL_TIM_PWM_Init(&htim3);
|
||||
HAL_TIM_PWM_Init(&htim3);
|
||||
|
||||
HAL_TIM_OC_Init(&htim3);
|
||||
HAL_TIM_OC_Init(&htim3);
|
||||
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig);
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig);
|
||||
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0; // Output control
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||
HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL);
|
||||
// TODO need to do buzzer
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 0; // Output control
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||
HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL);
|
||||
// TODO need to do buzzer
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
|
||||
/**TIM3 GPIO Configuration
|
||||
PWM_Out_Pin ------> TIM3_CH1
|
||||
*/
|
||||
GPIO_InitStruct.Pin = PWM_Out_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
|
||||
HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL);
|
||||
/**TIM3 GPIO Configuration
|
||||
PWM_Out_Pin ------> TIM3_CH1
|
||||
*/
|
||||
GPIO_InitStruct.Pin = PWM_Out_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
|
||||
HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL);
|
||||
}
|
||||
/* TIM3 init function */
|
||||
static void MX_TIM2_Init(void) {
|
||||
|
||||
TIM_ClockConfigTypeDef sClockSourceConfig;
|
||||
TIM_MasterConfigTypeDef sMasterConfig;
|
||||
TIM_OC_InitTypeDef sConfigOC;
|
||||
TIM_ClockConfigTypeDef sClockSourceConfig;
|
||||
TIM_MasterConfigTypeDef sMasterConfig;
|
||||
TIM_OC_InitTypeDef sConfigOC;
|
||||
|
||||
htim2.Instance = TIM2;
|
||||
htim2.Init.Prescaler = 200; // 2 MHz timer clock/2000 = 1 kHz tick rate
|
||||
htim2.Instance = TIM2;
|
||||
htim2.Init.Prescaler = 200; // 2 MHz timer clock/2000 = 1 kHz tick rate
|
||||
|
||||
// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
|
||||
// These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow"
|
||||
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
// dummy value, will be reconfigured by BSPInit()
|
||||
htim2.Init.Period = 10;
|
||||
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 8 MHz (x2 APB1) before divide
|
||||
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
htim2.Init.RepetitionCounter = 0;
|
||||
HAL_TIM_Base_Init(&htim2);
|
||||
// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
|
||||
// These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow"
|
||||
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
// dummy value, will be reconfigured by BSPInit()
|
||||
htim2.Init.Period = 10;
|
||||
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // 8 MHz (x2 APB1) before divide
|
||||
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
htim2.Init.RepetitionCounter = 0;
|
||||
HAL_TIM_Base_Init(&htim2);
|
||||
|
||||
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
||||
HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);
|
||||
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
||||
HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);
|
||||
|
||||
HAL_TIM_PWM_Init(&htim2);
|
||||
HAL_TIM_PWM_Init(&htim2);
|
||||
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
|
||||
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
|
||||
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
|
||||
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
|
||||
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
// dummy value, will be reconfigured by BSPInit() in the BSP.cpp
|
||||
sConfigOC.Pulse = 5;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
GPIO_InitStruct.Pin = HEAT_EN_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
|
||||
HAL_GPIO_Init(HEAT_EN_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4);
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
// dummy value, will be reconfigured by BSPInit() in the BSP.cpp
|
||||
sConfigOC.Pulse = 5;
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
GPIO_InitStruct.Pin = HEAT_EN_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
|
||||
HAL_GPIO_Init(HEAT_EN_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4);
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable DMA controller clock
|
||||
*/
|
||||
static void MX_DMA_Init(void) {
|
||||
/* DMA controller clock enable */
|
||||
__HAL_RCC_DMA1_CLK_ENABLE();
|
||||
/* DMA controller clock enable */
|
||||
__HAL_RCC_DMA1_CLK_ENABLE();
|
||||
|
||||
/* DMA interrupt init */
|
||||
/* DMA1_Channel1_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 10, 0);
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
|
||||
/* DMA1_Channel1_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 2, 0); // DMA 1 ch2 is used from TIM CH1 for WS2812
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
|
||||
/* DMA1_Channel6_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
|
||||
/* DMA1_Channel7_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
|
||||
/* DMA interrupt init */
|
||||
/* DMA1_Channel1_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 10, 0);
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
|
||||
/* DMA1_Channel1_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 2, 0); // DMA 1 ch2 is used from TIM CH1 for WS2812
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
|
||||
/* DMA1_Channel6_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
|
||||
/* DMA1_Channel7_IRQn interrupt configuration */
|
||||
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
|
||||
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
|
||||
}
|
||||
|
||||
static void MX_GPIO_Init(void) {
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
memset(&GPIO_InitStruct, 0, sizeof(GPIO_InitStruct));
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
memset(&GPIO_InitStruct, 0, sizeof(GPIO_InitStruct));
|
||||
|
||||
/* GPIO Ports Clock Enable */
|
||||
__HAL_RCC_GPIOD_CLK_ENABLE();
|
||||
__HAL_RCC_GPIOA_CLK_ENABLE();
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
/* GPIO Ports Clock Enable */
|
||||
__HAL_RCC_GPIOD_CLK_ENABLE();
|
||||
__HAL_RCC_GPIOA_CLK_ENABLE();
|
||||
__HAL_RCC_GPIOB_CLK_ENABLE();
|
||||
|
||||
/*Configure GPIO pin Output Level */
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
/*Configure GPIO pins : PD0 PD1 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
|
||||
/*Configure peripheral I/O remapping */
|
||||
__HAL_AFIO_REMAP_PD01_ENABLE();
|
||||
//^ remap XTAL so that pins used
|
||||
/*Configure GPIO pin Output Level */
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
/*Configure GPIO pins : PD0 PD1 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
|
||||
/*Configure peripheral I/O remapping */
|
||||
__HAL_AFIO_REMAP_PD01_ENABLE();
|
||||
//^ remap XTAL so that pins used
|
||||
|
||||
/*
|
||||
* Configure All pins as analog by default
|
||||
*/
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3
|
||||
| GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8
|
||||
| GPIO_PIN_10 | GPIO_PIN_15;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3
|
||||
| GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8
|
||||
| GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13
|
||||
| GPIO_PIN_14 | GPIO_PIN_15;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
/*
|
||||
* Configure All pins as analog by default
|
||||
*/
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_10 | GPIO_PIN_15;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12
|
||||
| GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */
|
||||
GPIO_InitStruct.Pin = KEY_B_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct);
|
||||
GPIO_InitStruct.Pin = KEY_A_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
HAL_GPIO_Init(KEY_A_GPIO_Port, &GPIO_InitStruct);
|
||||
/*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */
|
||||
GPIO_InitStruct.Pin = KEY_B_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct);
|
||||
GPIO_InitStruct.Pin = KEY_A_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
HAL_GPIO_Init(KEY_A_GPIO_Port, &GPIO_InitStruct);
|
||||
|
||||
/*Configure GPIO pin : OLED_RESET_Pin */
|
||||
GPIO_InitStruct.Pin = OLED_RESET_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
|
||||
|
||||
// Pull down LCD reset
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
|
||||
HAL_Delay(30);
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET);
|
||||
/*Configure GPIO pin : OLED_RESET_Pin */
|
||||
GPIO_InitStruct.Pin = OLED_RESET_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
||||
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
|
||||
|
||||
// Pull down LCD reset
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
|
||||
HAL_Delay(30);
|
||||
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET);
|
||||
}
|
||||
|
||||
#ifdef USE_FULL_ASSERT
|
||||
|
||||
@@ -13,13 +13,13 @@
|
||||
|
||||
// Initialisation to be performed with scheduler active
|
||||
void postRToSInit() {
|
||||
WS2812::init();
|
||||
WS2812::led_set_color(0, 0xAA, 0x55, 0x00);
|
||||
while (true) {
|
||||
// osDelay(1);
|
||||
// WS2812::led_set_color(0, 0xFF, 0xFF, 0xFF);
|
||||
// WS2812::led_update(1);
|
||||
osDelay(10);
|
||||
WS2812::led_update(1);
|
||||
}
|
||||
WS2812::init();
|
||||
WS2812::led_set_color(0, 0xAA, 0x00, 0x00);
|
||||
while (true) {
|
||||
// osDelay(1);
|
||||
// WS2812::led_set_color(0, 0xFF, 0xFF, 0xFF);
|
||||
// WS2812::led_update(1);
|
||||
osDelay(10);
|
||||
WS2812::led_update(1);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9,190 +9,174 @@
|
||||
#include "task.h"
|
||||
#include <WS2812.h>
|
||||
#include <string.h>
|
||||
uint8_t WS2812::leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
|
||||
uint8_t WS2812::leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
|
||||
volatile uint16_t WS2812::tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
|
||||
volatile uint8_t WS2812::is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
|
||||
volatile uint8_t WS2812::is_updating; /*!< Is updating in progress? */
|
||||
volatile uint32_t WS2812::current_led; /*!< Current LED number we are sending */
|
||||
volatile uint8_t WS2812::is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
|
||||
volatile uint8_t WS2812::is_updating; /*!< Is updating in progress? */
|
||||
volatile uint32_t WS2812::current_led; /*!< Current LED number we are sending */
|
||||
|
||||
void WS2812::init(void) {
|
||||
memset(leds_colors, 0, sizeof(leds_colors));
|
||||
hdma_tim1_ch1.XferHalfCpltCallback = DMAHalfComplete;
|
||||
hdma_tim1_ch1.XferCpltCallback = DMAComplete;
|
||||
htim1.Instance->CCR1 = htim1.Instance->ARR / 2 - 1;
|
||||
htim1.Instance->DIER |= TIM_DIER_CC1DE;
|
||||
memset(leds_colors, 0, sizeof(leds_colors));
|
||||
hdma_tim1_ch1.XferHalfCpltCallback = DMAHalfComplete;
|
||||
hdma_tim1_ch1.XferCpltCallback = DMAComplete;
|
||||
htim1.Instance->CCR1 = htim1.Instance->ARR / 2 - 1;
|
||||
htim1.Instance->DIER |= TIM_DIER_CC1DE;
|
||||
}
|
||||
|
||||
uint8_t WS2812::led_update(uint8_t block) {
|
||||
if (is_updating) { /* Check if update in progress already */
|
||||
return 0;
|
||||
}
|
||||
is_updating = 1; /* We are now updating */
|
||||
if (is_updating) { /* Check if update in progress already */
|
||||
return 0;
|
||||
}
|
||||
is_updating = 1; /* We are now updating */
|
||||
|
||||
led_start_reset_pulse(1); /* Start reset pulse */
|
||||
if (block) {
|
||||
while (!led_is_update_finished()) {
|
||||
vTaskDelay(1);
|
||||
}; /* Wait to finish */
|
||||
}
|
||||
return 1;
|
||||
led_start_reset_pulse(1); /* Start reset pulse */
|
||||
if (block) {
|
||||
while (!led_is_update_finished()) {
|
||||
vTaskDelay(1);
|
||||
}; /* Wait to finish */
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void WS2812::led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b) {
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
|
||||
}
|
||||
|
||||
void WS2812::led_set_color_all(uint8_t r, uint8_t g, uint8_t b) {
|
||||
for (int index = 0; index < WS2812_LED_COUNT; index++) {
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
|
||||
}
|
||||
for (int index = 0; index < WS2812_LED_COUNT; index++) {
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 0] = r;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 1] = g;
|
||||
leds_colors[index * WS2812_LED_CHANNEL_COUNT + 2] = b;
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t WS2812::led_is_update_finished(void) {
|
||||
return !is_updating;
|
||||
}
|
||||
uint8_t WS2812::led_is_update_finished(void) { return !is_updating; }
|
||||
|
||||
void WS2812::led_start_reset_pulse(uint8_t num) {
|
||||
is_reset_pulse = num; /* Set reset pulse flag */
|
||||
is_reset_pulse = num; /* Set reset pulse flag */
|
||||
|
||||
memset((void*)tmp_led_data, 0, sizeof(tmp_led_data)); /* Set all bytes to 0 to achieve 50us pulse */
|
||||
memset((void *)tmp_led_data, 0, sizeof(tmp_led_data)); /* Set all bytes to 0 to achieve 50us pulse */
|
||||
|
||||
if (num == 1) {
|
||||
tmp_led_data[0] = htim1.Instance->ARR / 2; // start with half width pulse
|
||||
}
|
||||
if (num == 1) {
|
||||
tmp_led_data[0] = (htim1.Instance->ARR * 2) / 3; // start with half width pulse
|
||||
}
|
||||
|
||||
/* Set DMA to normal mode, set memory to beginning of data and length to 40 elements */
|
||||
/* 800kHz PWM x 40 samples = ~50us pulse low */
|
||||
hdma_tim1_ch1.Instance->CCR &= (~DMA_CCR_CIRC); // clear circular flag -> normal mode
|
||||
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
|
||||
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t) tmp_led_data,
|
||||
(uint32_t) &htim1.Instance->CCR1, 40);
|
||||
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
|
||||
/* Set DMA to normal mode, set memory to beginning of data and length to 40 elements */
|
||||
/* 800kHz PWM x 40 samples = ~50us pulse low */
|
||||
hdma_tim1_ch1.Instance->CCR &= (~DMA_CCR_CIRC); // clear circular flag -> normal mode
|
||||
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
|
||||
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t)tmp_led_data, (uint32_t)&htim1.Instance->CCR1, 2 * WS2812_RAW_BYTES_PER_LED);
|
||||
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
|
||||
}
|
||||
|
||||
void WS2812::DMAHalfComplete(DMA_HandleTypeDef *hdma) {
|
||||
led_update_sequence(0);
|
||||
}
|
||||
void WS2812::DMAHalfComplete(DMA_HandleTypeDef *hdma) { led_update_sequence(0); }
|
||||
|
||||
void WS2812::DMAComplete(DMA_HandleTypeDef *hdma) {
|
||||
led_update_sequence(1);
|
||||
}
|
||||
void WS2812::DMAComplete(DMA_HandleTypeDef *hdma) { led_update_sequence(1); }
|
||||
|
||||
void WS2812::led_update_sequence(uint8_t tc) {
|
||||
tc = !!tc; /* Convert to 1 or 0 value only */
|
||||
tc = !!tc; /* Convert to 1 or 0 value only */
|
||||
|
||||
/* Check for reset pulse at the end of PWM stream */
|
||||
if (is_reset_pulse == 2) { /* Check for reset pulse at the end */
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
is_updating = 0; /* We are not updating anymore */
|
||||
return;
|
||||
}
|
||||
/* Check for reset pulse at the end of PWM stream */
|
||||
if (is_reset_pulse == 2) { /* Check for reset pulse at the end */
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
is_updating = 0; /* We are not updating anymore */
|
||||
return;
|
||||
}
|
||||
|
||||
/* Check for reset pulse on beginning of PWM stream */
|
||||
if (is_reset_pulse == 1) { /* Check if we finished with reset pulse */
|
||||
/*
|
||||
* When reset pulse is active, we have to wait full DMA response,
|
||||
* before we can start modifying array which is shared with DMA and PWM
|
||||
*/
|
||||
if (!tc) { /* We must wait for transfer complete */
|
||||
return; /* Return and wait to finish */
|
||||
}
|
||||
/* Check for reset pulse on beginning of PWM stream */
|
||||
if (is_reset_pulse == 1) { /* Check if we finished with reset pulse */
|
||||
/*
|
||||
* When reset pulse is active, we have to wait full DMA response,
|
||||
* before we can start modifying array which is shared with DMA and PWM
|
||||
*/
|
||||
if (!tc) { /* We must wait for transfer complete */
|
||||
return; /* Return and wait to finish */
|
||||
}
|
||||
|
||||
/* Disable timer output and disable DMA stream */
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
/* Disable timer output and disable DMA stream */
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
|
||||
is_reset_pulse = 0; /* Not in reset pulse anymore */
|
||||
current_led = 0; /* Reset current led */
|
||||
} else {
|
||||
/*
|
||||
* When we are not in reset mode,
|
||||
* go to next led and process data for it
|
||||
*/
|
||||
current_led++; /* Go to next LED */
|
||||
}
|
||||
is_reset_pulse = 0; /* Not in reset pulse anymore */
|
||||
current_led = 0; /* Reset current led */
|
||||
} else {
|
||||
/*
|
||||
* When we are not in reset mode,
|
||||
* go to next led and process data for it
|
||||
*/
|
||||
current_led++; /* Go to next LED */
|
||||
}
|
||||
|
||||
/*
|
||||
* This part is used to prepare data for "next" led,
|
||||
* for which update will start once current transfer stops in circular mode
|
||||
*/
|
||||
if (current_led < WS2812_LED_COUNT) {
|
||||
/*
|
||||
* If we are preparing data for first time (current_led == 0)
|
||||
* or if there was no TC event (it was HT):
|
||||
*
|
||||
* - Prepare first part of array, because either there is no transfer
|
||||
* or second part (from HT to TC) is now in process for PWM transfer
|
||||
*
|
||||
* In other case (TC = 1)
|
||||
*/
|
||||
if (current_led == 0 || !tc) {
|
||||
led_fill_led_pwm_data(current_led, &tmp_led_data[0]);
|
||||
} else {
|
||||
led_fill_led_pwm_data(current_led,
|
||||
&tmp_led_data[WS2812_RAW_BYTES_PER_LED]);
|
||||
}
|
||||
/*
|
||||
* This part is used to prepare data for "next" led,
|
||||
* for which update will start once current transfer stops in circular mode
|
||||
*/
|
||||
if (current_led < WS2812_LED_COUNT) {
|
||||
/*
|
||||
* If we are preparing data for first time (current_led == 0)
|
||||
* or if there was no TC event (it was HT):
|
||||
*
|
||||
* - Prepare first part of array, because either there is no transfer
|
||||
* or second part (from HT to TC) is now in process for PWM transfer
|
||||
*
|
||||
* In other case (TC = 1)
|
||||
*/
|
||||
if (current_led == 0 || !tc) {
|
||||
led_fill_led_pwm_data(current_led, &tmp_led_data[0]);
|
||||
} else {
|
||||
led_fill_led_pwm_data(current_led, &tmp_led_data[WS2812_RAW_BYTES_PER_LED]);
|
||||
}
|
||||
|
||||
/*
|
||||
* If we are preparing first led (current_led = 0), then:
|
||||
*
|
||||
* - We setup first part of array for first led,
|
||||
* - We have to prepare second part for second led to have one led prepared in advance
|
||||
* - Set DMA to circular mode and start the transfer + PWM output
|
||||
*/
|
||||
if (current_led == 0) {
|
||||
/*
|
||||
* If we are preparing first led (current_led = 0), then:
|
||||
*
|
||||
* - We setup first part of array for first led,
|
||||
* - We have to prepare second part for second led to have one led prepared in advance
|
||||
* - Set DMA to circular mode and start the transfer + PWM output
|
||||
*/
|
||||
if (current_led == 0) {
|
||||
|
||||
current_led++; /* Go to next LED */
|
||||
led_fill_led_pwm_data(current_led,
|
||||
&tmp_led_data[WS2812_RAW_BYTES_PER_LED]); /* Prepare second LED too */
|
||||
hdma_tim1_ch1.Instance->CCR |= (DMA_CCR_CIRC); // set circular flag for circular mode
|
||||
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
|
||||
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t) tmp_led_data,
|
||||
(uint32_t) &htim1.Instance->CCR1,
|
||||
2 * WS2812_RAW_BYTES_PER_LED);
|
||||
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
|
||||
}
|
||||
current_led++; /* Go to next LED */
|
||||
led_fill_led_pwm_data(current_led, &tmp_led_data[WS2812_RAW_BYTES_PER_LED]); /* Prepare second LED too */
|
||||
hdma_tim1_ch1.Instance->CCR |= (DMA_CCR_CIRC); // set circular flag for circular mode
|
||||
hdma_tim1_ch1.State = HAL_DMA_STATE_READY;
|
||||
HAL_DMA_Start_IT(&hdma_tim1_ch1, (uint32_t)tmp_led_data, (uint32_t)&htim1.Instance->CCR1, 2 * WS2812_RAW_BYTES_PER_LED);
|
||||
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
|
||||
}
|
||||
|
||||
/*
|
||||
* When we reached all leds, we have to wait to transmit data for all leds before we can disable DMA and PWM:
|
||||
*
|
||||
* - If TC event is enabled and we have EVEN number of LEDS (2, 4, 6, ...)
|
||||
* - If HT event is enabled and we have ODD number of LEDS (1, 3, 5, ...)
|
||||
*/
|
||||
} else if ((!tc && (WS2812_LED_COUNT & 0x01))
|
||||
|| (tc && !(WS2812_LED_COUNT & 0x01))) {
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
/*
|
||||
* When we reached all leds, we have to wait to transmit data for all leds before we can disable DMA and PWM:
|
||||
*
|
||||
* - If TC event is enabled and we have EVEN number of LEDS (2, 4, 6, ...)
|
||||
* - If HT event is enabled and we have ODD number of LEDS (1, 3, 5, ...)
|
||||
*/
|
||||
} else if ((!tc && (WS2812_LED_COUNT & 0x01)) || (tc && !(WS2812_LED_COUNT & 0x01))) {
|
||||
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_1);
|
||||
HAL_DMA_Abort(&hdma_tim1_ch1);
|
||||
|
||||
/* It is time to send final reset pulse, 50us at least */
|
||||
led_start_reset_pulse(2); /* Start reset pulse at the end */
|
||||
}
|
||||
/* It is time to send final reset pulse, 50us at least */
|
||||
led_start_reset_pulse(2); /* Start reset pulse at the end */
|
||||
}
|
||||
}
|
||||
|
||||
void WS2812::led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr) {
|
||||
size_t i;
|
||||
uint16_t OnOffValues[] = { 2* htim1.Instance->ARR / 3,
|
||||
(4 * htim1.Instance->ARR) / 3 };
|
||||
size_t i;
|
||||
uint16_t OnOffValues[] = {2 * htim1.Instance->ARR / 3, (4 * htim1.Instance->ARR) / 3};
|
||||
|
||||
if (ledx < WS2812_LED_COUNT) {
|
||||
for (i = 0; i < 8; i++) {
|
||||
//Also unmux RGB -> GRB in the index order here
|
||||
ptr[i] =
|
||||
(leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 1]
|
||||
& (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
ptr[8 + i] =
|
||||
(leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 0]
|
||||
& (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
ptr[16 + i] =
|
||||
(leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 2]
|
||||
& (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
}
|
||||
} else {
|
||||
//Fill with zero?
|
||||
}
|
||||
if (ledx < WS2812_LED_COUNT) {
|
||||
for (i = 0; i < 8; i++) {
|
||||
// Also unmux RGB -> GRB in the index order here
|
||||
ptr[i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 1] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
ptr[8 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 0] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
ptr[16 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 2] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
#if WS2812_LED_CHANNEL_COUNT == 4
|
||||
ptr[24 + i] = (leds_colors[WS2812_LED_CHANNEL_COUNT * ledx + 3] & (1 << (7 - i))) ? OnOffValues[1] : OnOffValues[0];
|
||||
#endif
|
||||
}
|
||||
} else {
|
||||
// Fill with zero?
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
#ifndef CORE_DRIVERS_WS2812_H_
|
||||
#define CORE_DRIVERS_WS2812_H_
|
||||
#ifndef WS2812_LED_COUNT
|
||||
#define WS2812_LED_COUNT 4
|
||||
#define WS2812_LED_COUNT 3
|
||||
#endif
|
||||
#ifndef WS2812_LED_CHANNEL_COUNT
|
||||
#define WS2812_LED_CHANNEL_COUNT 3
|
||||
@@ -19,23 +19,23 @@
|
||||
#define WS2812_RAW_BYTES_PER_LED (WS2812_LED_CHANNEL_COUNT * 8)
|
||||
class WS2812 {
|
||||
public:
|
||||
static void init(void);
|
||||
static uint8_t led_update(uint8_t block);
|
||||
static void led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b);
|
||||
static void led_set_color_all(uint8_t r, uint8_t g, uint8_t b);
|
||||
static void init(void);
|
||||
static uint8_t led_update(uint8_t block);
|
||||
static void led_set_color(size_t index, uint8_t r, uint8_t g, uint8_t b);
|
||||
static void led_set_color_all(uint8_t r, uint8_t g, uint8_t b);
|
||||
|
||||
private:
|
||||
static uint8_t led_is_update_finished(void);
|
||||
static void led_start_reset_pulse(uint8_t num);
|
||||
static void DMAHalfComplete(DMA_HandleTypeDef *hdma);
|
||||
static void DMAComplete(DMA_HandleTypeDef *hdma);
|
||||
static void led_update_sequence(uint8_t tc);
|
||||
static void led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr);
|
||||
static uint8_t leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
|
||||
static volatile uint16_t tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
|
||||
static volatile uint8_t is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
|
||||
static volatile uint8_t is_updating; /*!< Is updating in progress? */
|
||||
static volatile uint32_t current_led; /*!< Current LED number we are sending */
|
||||
static uint8_t led_is_update_finished(void);
|
||||
static void led_start_reset_pulse(uint8_t num);
|
||||
static void DMAHalfComplete(DMA_HandleTypeDef *hdma);
|
||||
static void DMAComplete(DMA_HandleTypeDef *hdma);
|
||||
static void led_update_sequence(uint8_t tc);
|
||||
static void led_fill_led_pwm_data(size_t ledx, volatile uint16_t *ptr);
|
||||
static uint8_t leds_colors[WS2812_LED_CHANNEL_COUNT * WS2812_LED_COUNT];
|
||||
static volatile uint16_t tmp_led_data[2 * WS2812_RAW_BYTES_PER_LED];
|
||||
static volatile uint8_t is_reset_pulse; /*!< Status if we are sending reset pulse or led data */
|
||||
static volatile uint8_t is_updating; /*!< Is updating in progress? */
|
||||
static volatile uint32_t current_led; /*!< Current LED number we are sending */
|
||||
};
|
||||
|
||||
#endif /* CORE_DRIVERS_WS2812_H_ */
|
||||
|
||||
Reference in New Issue
Block a user