Merge remote-tracking branch 'upstream/master' into watts

This commit is contained in:
David P Hilton
2018-10-29 07:34:22 -06:00
9 changed files with 1056 additions and 709 deletions

View File

@@ -115,6 +115,7 @@ enum TipType {
};
#endif
uint16_t lookupTipDefaultCalValue(enum TipType tipID);
uint16_t getHandleTemperature();
uint16_t getTipRawTemp(uint8_t refresh);
uint16_t getInputVoltageX10(uint16_t divisor);

View File

@@ -308,9 +308,12 @@ static void MX_TIM2_Init(void) {
// in the PWM off time.
htim2.Instance = TIM2;
htim2.Init.Prescaler =
2000; // pwm out is 10k, we want to run our PWM at around 100hz
785; // pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
// The input is 1mhz after the div/4, so divide this by 785 to give around 4Hz output change rate
//Trade off is the slower the PWM output the slower we can respond and we gain temperature accuracy in settling time,
//But it increases the time delay between the heat cycle and the measurement and calculate cycle
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 122;
htim2.Init.Period = 255+56;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 4mhz before divide
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
HAL_TIM_Base_Init(&htim2);
@@ -326,11 +329,11 @@ static void MX_TIM2_Init(void) {
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 118;
sConfigOC.Pulse = 255+47; //255 is the largest time period of the drive signal, and the 47 offsets this around 5ms afterwards
/*
* It takes 4 milliseconds for output to be stable after PWM turns off.
* Assume ADC samples in 0.5ms
* We need to set this to 100% + 5.5ms
* We need to set this to 100% + 4.5ms
* */
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;

View File

@@ -1214,6 +1214,99 @@ const char* SettingsMenuEntriesDescriptions[4] = {
#endif
#ifdef LANG_NL_BE
// ---- Vlaams ----
const char* SettingsDescriptions[] = {
/* PowerSource */ "Spanningsbron. Stelt minimumspanning in. <DC 10V> <S 3.3V per cel>",
/* SleepTemperature */ "Temperatuur in slaapstand <°C>",
/* SleepTimeout */ "Slaapstand time-out <Minuten/Seconden>",
/* ShutdownTimeout */ "Automatisch afsluiten time-out <Minuten>",
/* MotionSensitivity */ "Bewegingsgevoeligheid <0.uit 1.minst gevoelig 9.meest gevoelig>",
/* TemperatureUnit */ "Temperatuurschaal <°C=Celsius °F=Fahrenheit>",
/* AdvancedIdle */ "Gedetailleerde informatie in een kleiner lettertype in het slaapscherm.",
/* DisplayRotation */ "Schermoriëntatie <A. Automatisch L. Linkshandig R. Rechtshandig>",
/* BoostEnabled */ "Temperatuur verhoogt als voorste knop is ingedrukt",
/* BoostTemperature */ "Verhogingstemperatuur",
/* AutoStart */ "Breng de soldeerbout op temperatuur bij het opstarten. T=Soldeertemperatuur, S=Slaapstand-temperatuur, F=Uit",
/* CooldownBlink */ "Temperatuur knippert in hoofdmenu tijdens afkoeling.",
/* TemperatureCalibration */ "Temperatuur van de punt calibreren.",
/* SettingsReset */ "Alle instellingen resetten.",
/* VoltageCalibration */ "VIN Calibreren. Bevestigen door knoppen lang in te drukken.",
/* AdvancedSoldering */ "Gedetailleerde informatie in kleiner lettertype in soldeerscherm.",
/* ScrollingSpeed */ "Scrolsnelheid van de tekst.",
/* TipModel */ "Gekozen punt",
/* SimpleCalibrationMode */ "Calibrering met heet water",
/* AdvancedCalibrationMode */ "Calibrering met thermokoppel",
/* PowerInput */ "Vermogen van de adapter",
};
const char* SettingsCalibrationDone = "Gecalibreerd!";
const char* SettingsCalibrationWarning = "Zorg vooraf dat de punt op kamertemperatuur is!";
const char* SettingsResetWarning = "Ben je zeker dat je alle standaardwaarden wil resetten?";
const char* UVLOWarningString = "Voedingsspanning LAAG";
const char* UndervoltageString = "Onderspanning";
const char* InputVoltageString = "Voedingsspanning: ";
const char* WarningTipTempString = "Punt Temp: ";
const char* BadTipString = "DEFECT";
const char* SleepingSimpleString = "Zzz ";
const char* SleepingAdvancedString = "Slaapstand...";
const char* WarningSimpleString = "HEET";
const char* WarningAdvancedString = "!!! PUNT HEET !!!";
const char* SleepingTipAdvancedString = "Punt:";
const char* IdleTipString = "Punt:";
const char* IdleSetString = "Stel in:";
const char* TipDisconnectedString = "Punt ONTKOPPELD";
const char* SolderingAdvancedPowerPrompt = "Vermogen: ";
const char* OffString = "Uit";
const char SettingRightChar = 'R';
const char SettingLeftChar = 'L';
const char SettingAutoChar = 'A';
const char SettingFastChar = 'S';
const char SettingSlowChar = 'T';
const enum ShortNameType SettingsShortNameType = SHORT_NAME_DOUBLE_LINE;
const char* SettingsShortNames[][2] = {
/* PowerSource */ { "Spannings-", "bron" },
/* SleepTemperature */ { "Slaap", "temp" },
/* SleepTimeout */ { "Slaap", "time-out" },
/* ShutdownTimeout */ { "Uitschakel", "time-out" },
/* MotionSensitivity */ { "Bewegings-", "gevoeligheid" },
/* TemperatureUnit */ { "Temperatuur", "schaal" },
/* AdvancedIdle */ { "Gedetailleerd", "slaapscherm" },
/* DisplayRotation */ { "Scherm-", "oriëntatie" },
/* BoostEnabled */ { "Temperatuurverhoging", "ingeschakeld?" },
/* BoostTemperature */ { "Verhogings", "temp" },
/* AutoStart */ { "Auto", "start" },
/* CooldownBlink */ { "Afkoel", "knipper" },
/* TemperatureCalibration */ { "Calibreer", "temperatuur?" },
/* SettingsReset */ { "Instellingen", "resetten?" },
/* VoltageCalibration */ { "Calibreer", "voedingsspanning?" },
/* AdvancedSoldering */ { "Gedetailleerd", "soldeerscherm" },
/* ScrollingSpeed */ { "Scrol", "snelheid" },
/* TipModel */ { "Punt", "Model" },
/* SimpleCalibrationMode */ { "Eenvoudige", "Calibrering" },
/* AdvancedCalibrationMode */ { "Gevorderde", "Calibrering" },
/* PowerInput */ { "Vermogen", "Watt" },
};
const char* SettingsMenuEntries[4] = {
/* SolderingMenu */ "Soldeer\nInstellingen",
/* PowerSavingMenu */ "Slaap\nstanden",
/* UIMenu */ "Gebruikers-\nInterface",
/* AdvancedMenu */ "Gevorderde\nInstellingen",
};
const char* SettingsMenuEntriesDescriptions[4] = {
/* SolderingMenu */ "Soldeerinstellingen",
/* PowerSavingMenu */ "Batterijspaarstanden",
/* UIMenu */ "Gebruikersinterface Instellingen",
/* AdvancedMenu */ "Gevorderde Instellingen",
};
#endif
#ifdef LANG_NO
// ---- Norsk ----

File diff suppressed because it is too large Load Diff

View File

@@ -12,7 +12,6 @@
volatile uint16_t PWMSafetyTimer = 0;
volatile int16_t CalibrationTempOffset = 0;
uint16_t tipGainCalValue = 0;
uint16_t lookupTipDefaultCalValue(enum TipType tipID);
void setTipType(enum TipType tipType, uint8_t manualCalGain) {
if (manualCalGain)
tipGainCalValue = manualCalGain;
@@ -133,7 +132,7 @@ uint16_t getInputVoltageX10(uint16_t divisor) {
// Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467
#define BATTFILTERDEPTH 64
#define BATTFILTERDEPTH 32
static uint8_t preFillneeded = 1;
static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0;
@@ -159,14 +158,14 @@ uint8_t QCMode = 0;
uint8_t QCTries = 0;
void seekQC(int16_t Vx10,uint16_t divisor) {
if (QCMode == 5)
startQC(divisor);
startQC(divisor);
if (QCMode == 0)
return; // NOT connected to a QC Charger
return; // NOT connected to a QC Charger
if (Vx10 < 50)
return;
if (Vx10 < 45)
return;
if(Vx10>130)
Vx10=130;//Cap max value at 13V
Vx10=130;//Cap max value at 13V
// Seek the QC to the Voltage given if this adapter supports continuous mode
// try and step towards the wanted value
@@ -179,15 +178,15 @@ void seekQC(int16_t Vx10,uint16_t divisor) {
int steps = difference / 2;
if (QCMode == 3) {
while (steps < 0) {
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
vTaskDelay(3);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);//D+0.6
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);//D-3.3V
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);// D-3.3Vs
vTaskDelay(3);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);//-0.6V
HAL_Delay(1);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL_IWDG_Refresh(&hiwdg);
vTaskDelay(3);
HAL_Delay(1);
steps++;
}
while (steps > 0) {
@@ -198,10 +197,10 @@ void seekQC(int16_t Vx10,uint16_t divisor) {
vTaskDelay(3);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
vTaskDelay(3);
HAL_Delay(1);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
HAL_IWDG_Refresh(&hiwdg);
vTaskDelay(3);
HAL_Delay(1);
steps--;
}
}
@@ -238,7 +237,7 @@ void startQC(uint16_t divisor) {
// negotiating as someone is feeding in hv
uint16_t vin = getInputVoltageX10(divisor);
if (vin > 150)
return; // Over voltage
return;// Over voltage
if (vin > 100) {
QCMode = 1; // ALready at ~12V
return;
@@ -280,7 +279,7 @@ void startQC(uint16_t divisor) {
}
// Check if D- is low to spot a QC charger
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_11) == GPIO_PIN_RESET)
enteredQC = 1;
enteredQC = 1;
if (enteredQC) {
// We have a QC capable charger
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
@@ -300,7 +299,7 @@ void startQC(uint16_t divisor) {
for (uint8_t i = 0; i < 10; i++) {
if (getInputVoltageX10(divisor) > 80) {
// yay we have at least QC2.0 or QC3.0
QCMode = 3; // We have at least QC2, pray for 3
QCMode = 3;// We have at least QC2, pray for 3
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
@@ -311,14 +310,14 @@ void startQC(uint16_t divisor) {
QCMode = 5;
QCTries++;
if (QCTries > 10) // 10 goes to get it going
QCMode = 0;
QCMode = 0;
} else {
// no QC
QCMode = 0;
}
if (QCTries > 10)
QCMode = 0;
QCMode = 0;
}
// Get tip resistance in milliohms
uint32_t calculateTipR() {
@@ -332,7 +331,7 @@ uint32_t calculateTipR() {
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET); // Set low first
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);// Set low first
setTipPWM(0);
vTaskDelay(1);
uint32_t offReading = getTipRawTemp(1);
@@ -342,8 +341,8 @@ uint32_t calculateTipR() {
}
// Turn on
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET); // Set low first
vTaskDelay(1); // delay to allow it to stabilize
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET);// Set low first
vTaskDelay(1); // delay to allow it too stabilize
uint32_t onReading = getTipInstantTemperature();
for (uint8_t i = 0; i < 24; i++) {
vTaskDelay(1); // delay to allow it to stabilize
@@ -357,7 +356,7 @@ uint32_t calculateTipR() {
// 4688 milliohms (Measured using 4 terminal measurement) 25x oversampling
// reads this as around 47490 Almost perfectly 10x the milliohms value This
// will drift massively with tip temp However we really only need 10x ohms
return (difference / 10) + 1; // ceil
return (difference / 10) + 1;// ceil
}
static unsigned int sqrt32(unsigned long n) {
unsigned int c = 0x8000;
@@ -365,10 +364,10 @@ static unsigned int sqrt32(unsigned long n) {
for (;;) {
if (g * g > n)
g ^= c;
g ^= c;
c >>= 1;
if (c == 0)
return g;
return g;
g |= c;
}
}
@@ -379,26 +378,26 @@ int16_t calculateMaxVoltage(uint8_t useHP) {
uint32_t milliOhms = calculateTipR();
// Check no tip
if (milliOhms > 10000)
return -1;
return -1;
//
// V = sqrt(18W*R)
// Convert this to sqrt(18W)*sqrt(milli ohms)*sqrt(1/1000)
uint32_t Vx = sqrt32(milliOhms);
if (useHP)
Vx *= 1549; //sqrt(24)*sqrt(1/1000)
Vx *= 1549;//sqrt(24)*sqrt(1/1000)
else
Vx *= 1342; // sqrt(18) * sqrt(1/1000)
Vx *= 1342;// sqrt(18) * sqrt(1/1000)
// Round to nearest 200mV,
// So divide by 100 to start, to get in Vxx
Vx /= 100;
if (Vx % 10 >= 5)
Vx += 10;
Vx += 10;
Vx /= 10;
// Round to nearest increment of 2
if (Vx % 2 == 1)
Vx++;
Vx++;
return Vx;
}
@@ -410,9 +409,10 @@ uint8_t getTipPWM() {
void setTipPWM(uint8_t pulse) {
PWMSafetyTimer = 2; // This is decremented in the handler for PWM so that the tip pwm is
// disabled if the PID task is not scheduled often enough.
if (pulse > 100)
pulse = 100;
if (pulse > 255)
pulse = 255;
if (pulse == 0) // Need to have some pulse to keep the PID controller moving forward as these end of cycle completions move the thread along
pulse = 1;
pendingPWM = pulse;
}

View File

@@ -262,34 +262,37 @@ static void gui_drawBatteryIcon() {
// User is on a lithium battery
// we need to calculate which of the 10 levels they are on
uint8_t cellCount = systemSettings.cutoutSetting + 2;
uint16_t cellV = getInputVoltageX10(systemSettings.voltageDiv) / cellCount;
uint16_t cellV = getInputVoltageX10(systemSettings.voltageDiv)
/ cellCount;
// Should give us approx cell voltage X10
// Range is 42 -> 33 = 9 steps therefore we will use battery 1-10
if (cellV < 33) cellV = 33;
cellV -= 33;// Should leave us a number of 0-9
if (cellV > 9) cellV = 9;
if (cellV < 33)
cellV = 33;
cellV -= 33; // Should leave us a number of 0-9
if (cellV > 9)
cellV = 9;
OLED::drawBattery(cellV + 1);
} else
OLED::drawSymbol(15); // Draw the DC Logo
OLED::drawSymbol(15); // Draw the DC Logo
#else
// On TS80 we replace this symbol with the voltage we are operating on
// If <9V then show single digit, if not show duals
uint8_t V = getInputVoltageX10(systemSettings.voltageDiv);
if (V % 10 >= 5)
V = V / 10 + 1; // round up
else
V = V / 10;
if (V >= 10) {
int16_t xPos = OLED::getCursorX();
OLED::setFont(1);
OLED::printNumber(1, 1);
OLED::setCursor(xPos, 8);
OLED::printNumber(V % 10, 1);
OLED::setFont(0);
OLED::setCursor(xPos+12,0); // need to reset this as if we drew a wide char
} else {
OLED::printNumber(V, 1);
}
// On TS80 we replace this symbol with the voltage we are operating on
// If <9V then show single digit, if not show duals
uint8_t V = getInputVoltageX10(systemSettings.voltageDiv);
if (V % 10 >= 5)
V = V / 10 + 1;// round up
else
V = V / 10;
if (V >= 10) {
int16_t xPos = OLED::getCursorX();
OLED::setFont(1);
OLED::printNumber(1, 1);
OLED::setCursor(xPos, 8);
OLED::printNumber(V % 10, 1);
OLED::setFont(0);
OLED::setCursor(xPos+12,0); // need to reset this as if we drew a wide char
} else {
OLED::printNumber(V, 1);
}
#endif
}
static void gui_solderingTempAdjust() {
@@ -312,7 +315,7 @@ static void gui_solderingTempAdjust() {
// exit
return;
break;
case BUTTON_F_LONG:
case BUTTON_B_LONG:
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration >
PRESS_ACCEL_INTERVAL_MAX) {
systemSettings.SolderingTemp -= 10; // sub 10
@@ -320,7 +323,7 @@ static void gui_solderingTempAdjust() {
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_B_LONG:
case BUTTON_F_LONG:
if (xTaskGetTickCount() - autoRepeatTimer + autoRepeatAcceleration >
PRESS_ACCEL_INTERVAL_MAX) {
systemSettings.SolderingTemp += 10;
@@ -328,10 +331,10 @@ static void gui_solderingTempAdjust() {
autoRepeatAcceleration += PRESS_ACCEL_STEP;
}
break;
case BUTTON_B_SHORT:
case BUTTON_F_SHORT:
systemSettings.SolderingTemp += 10; // add 10
break;
case BUTTON_F_SHORT:
case BUTTON_B_SHORT:
systemSettings.SolderingTemp -= 10; // sub 10
break;
default:
@@ -358,7 +361,11 @@ static void gui_solderingTempAdjust() {
if (xTaskGetTickCount() - lastChange > 200)
return; // exit if user just doesn't press anything for a bit
#ifdef MODEL_TS80
if (!OLED::getRotation())
#else
if (OLED::getRotation())
#endif
OLED::drawChar('-');
else
OLED::drawChar('+');
@@ -370,7 +377,11 @@ static void gui_solderingTempAdjust() {
else
OLED::drawSymbol(1);
OLED::drawChar(' ');
#ifdef MODEL_TS80
if (!OLED::getRotation())
#else
if (OLED::getRotation())
#endif
OLED::drawChar('+');
else
OLED::drawChar('-');
@@ -396,7 +407,8 @@ static int gui_SolderingSleepingMode() {
|| (xTaskGetTickCount() - lastButtonTime < 100))
return 0; // user moved or pressed a button, go back to soldering
#ifdef MODEL_TS100
if (checkVoltageForExit()) return 1; // return non-zero on error
if (checkVoltageForExit())
return 1; // return non-zero on error
#endif
if (systemSettings.temperatureInF) {
currentlyActiveTemperatureTarget = ftoTipMeasurement(
@@ -659,9 +671,9 @@ void showVersion(void) {
OLED::setCursor(0, 0); // Position the cursor at the 0,0 (top left)
OLED::setFont(1); // small font
#ifdef MODEL_TS100
OLED::print((char *)"V2.06 TS100"); // Print version number
OLED::print((char *) "V2.06 TS100"); // Print version number
#else
OLED::print((char *) "V2.06 TS80"); // Print version number
OLED::print((char *) "V2.06 TS80"); // Print version number
#endif
OLED::setCursor(0, 8); // second line
OLED::print(HEADERS[screen]);
@@ -729,7 +741,7 @@ void startGUITask(void const *argument __unused) {
bool buttonLockout = false;
bool tempOnDisplay = false;
getTipRawTemp(1); // reset filter
OLED::setRotation(systemSettings.OrientationMode & 1);
OLED::setRotation(!(systemSettings.OrientationMode & 1));
uint32_t ticks = xTaskGetTickCount();
ticks += 400; // 4 seconds from now
while (xTaskGetTickCount() < ticks) {
@@ -854,7 +866,7 @@ void startGUITask(void const *argument __unused) {
#ifdef MODEL_TS80
if (!OLED::getRotation()) {
#else
if (OLED::getRotation()) {
if (OLED::getRotation()) {
#endif
OLED::drawArea(12, 0, 84, 16, idleScreenBG);
OLED::setCursor(0, 0);
@@ -873,7 +885,7 @@ void startGUITask(void const *argument __unused) {
// draw temp over the start soldering button
// Location changes on screen rotation
#ifdef MODEL_TS80
if (!OLED::getRotation()) {
if (!OLED::getRotation()) {
#else
if (OLED::getRotation()) {
#endif
@@ -976,20 +988,20 @@ void startPIDTask(void const *argument __unused) {
#define MOVFilter 8
void startMOVTask(void const *argument __unused) {
OLED::setRotation(false);
OLED::setRotation(true);
#ifdef MODEL_TS80
startQC(systemSettings.voltageDiv);
while (idealQCVoltage == 0)
osDelay(20); // To ensure we return after idealQCVoltage is setup
osDelay(20); // To ensure we return after idealQCVoltage is setup
seekQC(idealQCVoltage,systemSettings.voltageDiv); // this will move the QC output to the preferred voltage to start with
seekQC(idealQCVoltage,systemSettings.voltageDiv);// this will move the QC output to the preferred voltage to start with
#else
osDelay(250); // wait for accelerometer to stabilize
#endif
OLED::setRotation(systemSettings.OrientationMode & 1);
OLED::setRotation(!(systemSettings.OrientationMode & 1));
lastMovementTime = 0;
int16_t datax[MOVFilter] = { 0 };
int16_t datay[MOVFilter] = { 0 };
@@ -1069,9 +1081,9 @@ void startMOVTask(void const *argument __unused) {
osDelay(100); // Slow down update rate
#ifdef MODEL_TS80
if (currentlyActiveTemperatureTarget) {
seekQC(idealQCVoltage,systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop
}
if (currentlyActiveTemperatureTarget) {
seekQC(idealQCVoltage,systemSettings.voltageDiv); // Run the QC seek again to try and compensate for cable V drop
}
#endif
}
}