Cleaning up config

This commit is contained in:
Ben V. Brown
2021-04-26 21:05:04 +10:00
parent 35f4054530
commit 3e5e0c1d6b
7 changed files with 333 additions and 372 deletions

View File

@@ -158,7 +158,6 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// Therefore we can divide down from there // Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options, // Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467 // ideal term is 467
#define BATTFILTERDEPTH 32
static uint8_t preFillneeded = 10; static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH]; static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0; static uint8_t index = 0;

View File

@@ -19,7 +19,7 @@
#define ACCEL_LIS #define ACCEL_LIS
#define ACCEL_MSA #define ACCEL_MSA
#define POW_PD #define POW_PD
#define POW_QC //#define POW_QC // Unsure if we have this
#define TEMP_NTC #define TEMP_NTC
#define I2C_SOFT #define I2C_SOFT
#define LIS_ORI_FLIP #define LIS_ORI_FLIP

View File

@@ -38,7 +38,7 @@
#define SDA_GPIO_Port GPIOB #define SDA_GPIO_Port GPIOB
#define SCL2_Pin GPIO_PIN_3 #define SCL2_Pin GPIO_PIN_3
#define SCL2_GPIO_Port GPIOB #define SCL2_GPIO_Port GPIOB
#define SDA2_Pin GPIO_PIN15 #define SDA2_Pin GPIO_PIN_15
#define SDA2_GPIO_Port GPIOA #define SDA2_GPIO_Port GPIOA
#define INT_PD_Pin GPIO_PIN_5 #define INT_PD_Pin GPIO_PIN_5
#define INT_PD_GPIO_Port GPIOB #define INT_PD_GPIO_Port GPIOB

View File

@@ -15,8 +15,8 @@ DMA_HandleTypeDef hdma_i2c1_rx;
DMA_HandleTypeDef hdma_i2c1_tx; DMA_HandleTypeDef hdma_i2c1_tx;
IWDG_HandleTypeDef hiwdg; IWDG_HandleTypeDef hiwdg;
TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim3;
#define ADC_CHANNELS 2 #define ADC_CHANNELS 2
#define ADC_SAMPLES 16 #define ADC_SAMPLES 16
uint32_t ADCReadings[ADC_SAMPLES * ADC_CHANNELS]; // room for 32 lots of the pair of readings uint32_t ADCReadings[ADC_SAMPLES * ADC_CHANNELS]; // room for 32 lots of the pair of readings
@@ -31,352 +31,351 @@ static void MX_TIM2_Init(void);
static void MX_DMA_Init(void); static void MX_DMA_Init(void);
static void MX_GPIO_Init(void); static void MX_GPIO_Init(void);
static void MX_ADC2_Init(void); static void MX_ADC2_Init(void);
void Setup_HAL() { void Setup_HAL() {
SystemClock_Config(); SystemClock_Config();
#ifndef SWD_ENABLE __HAL_AFIO_REMAP_SWJ_NOJTAG();
__HAL_AFIO_REMAP_SWJ_DISABLE();
#else
__HAL_AFIO_REMAP_SWJ_NOJTAG();
#endif
MX_GPIO_Init(); MX_GPIO_Init();
MX_DMA_Init(); MX_DMA_Init();
MX_I2C1_Init(); MX_I2C1_Init();
MX_ADC1_Init(); MX_ADC1_Init();
MX_ADC2_Init(); MX_ADC2_Init();
MX_TIM3_Init(); MX_TIM3_Init();
MX_TIM2_Init(); MX_TIM2_Init();
MX_IWDG_Init(); MX_IWDG_Init();
HAL_ADC_Start(&hadc2); HAL_ADC_Start(&hadc2);
HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings, (ADC_SAMPLES * ADC_CHANNELS)); // start DMA of normal readings HAL_ADCEx_MultiModeStart_DMA(&hadc1, ADCReadings,
HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings (ADC_SAMPLES * ADC_CHANNELS)); // start DMA of normal readings
HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings HAL_ADCEx_InjectedStart(&hadc1); // enable injected readings
HAL_ADCEx_InjectedStart(&hadc2); // enable injected readings
} }
// channel 0 -> temperature sensor, 1-> VIN // channel 0 -> temperature sensor, 1-> VIN
uint16_t getADC(uint8_t channel) { uint16_t getADC(uint8_t channel) {
uint32_t sum = 0; uint32_t sum = 0;
for (uint8_t i = 0; i < ADC_SAMPLES; i++) { for (uint8_t i = 0; i < ADC_SAMPLES; i++) {
uint16_t adc1Sample = ADCReadings[channel + (i * ADC_CHANNELS)]; uint16_t adc1Sample = ADCReadings[channel + (i * ADC_CHANNELS)];
uint16_t adc2Sample = ADCReadings[channel + (i * ADC_CHANNELS)] >> 16; uint16_t adc2Sample = ADCReadings[channel + (i * ADC_CHANNELS)] >> 16;
sum += (adc1Sample + adc2Sample); sum += (adc1Sample + adc2Sample);
} }
return sum >> 2; return sum >> 2;
} }
/** System Clock Configuration /** System Clock Configuration
*/ */
void SystemClock_Config(void) { void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit; RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks /**Initializes the CPU, AHB and APB busses clocks
*/ */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSI; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI
RCC_OscInitStruct.HSIState = RCC_HSI_ON; | RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64MHz RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
HAL_RCC_OscConfig(&RCC_OscInitStruct); RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64MHz
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks /**Initializes the CPU, AHB and APB busses clocks
*/ */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
// 2,3,4,5,6,7,12,13,14 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; // TIM
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc // 2,3,4,5,6,7,12,13,14
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 mhz to some peripherals and adc
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2); HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6; // 6 or 8 are the only non overclocked options PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6; // 6 or 8 are the only non overclocked options
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit); HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
/**Configure the Systick interrupt time /**Configure the Systick interrupt time
*/ */
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick /**Configure the Systick
*/ */
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */ /* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0); HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
} }
/* ADC1 init function */ /* ADC1 init function */
static void MX_ADC1_Init(void) { static void MX_ADC1_Init(void) {
ADC_MultiModeTypeDef multimode; ADC_MultiModeTypeDef multimode;
ADC_ChannelConfTypeDef sConfig; ADC_ChannelConfTypeDef sConfig;
ADC_InjectionConfTypeDef sConfigInjected; ADC_InjectionConfTypeDef sConfigInjected;
/**Common config /**Common config
*/ */
hadc1.Instance = ADC1; hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = ADC_CHANNELS; hadc1.Init.NbrOfConversion = ADC_CHANNELS;
HAL_ADC_Init(&hadc1); HAL_ADC_Init(&hadc1);
/**Configure the ADC multi-mode /**Configure the ADC multi-mode
*/ */
multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT; multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT;
HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode); HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);
/**Configure Regular Channel /**Configure Regular Channel
*/ */
sConfig.Channel = TMP36_ADC1_CHANNEL; sConfig.Channel = TMP36_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5; sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
HAL_ADC_ConfigChannel(&hadc1, &sConfig); HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Regular Channel /**Configure Regular Channel
*/ */
sConfig.Channel = VIN_ADC1_CHANNEL; sConfig.Channel = VIN_ADC1_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2; sConfig.Rank = ADC_REGULAR_RANK_2;
HAL_ADC_ConfigChannel(&hadc1, &sConfig); HAL_ADC_ConfigChannel(&hadc1, &sConfig);
/**Configure Injected Channel /**Configure Injected Channel
*/ */
// F in = 10.66 MHz // F in = 10.66 MHz
/* /*
* Injected time is 1 delay clock + (12 adc cycles*4)+4*sampletime =~217 * Injected time is 1 delay clock + (12 adc cycles*4)+4*sampletime =~217
* clocks = 0.2ms Charge time is 0.016 uS ideally So Sampling time must be >= * clocks = 0.2ms Charge time is 0.016 uS ideally So Sampling time must be >=
* 0.016uS 1/10.66MHz is 0.09uS, so 1 CLK is *should* be enough * 0.016uS 1/10.66MHz is 0.09uS, so 1 CLK is *should* be enough
* */ * */
sConfigInjected.InjectedChannel = TIP_TEMP_ADC1_CHANNEL; sConfigInjected.InjectedChannel = TIP_TEMP_ADC1_CHANNEL;
sConfigInjected.InjectedRank = 1; sConfigInjected.InjectedRank = 1;
sConfigInjected.InjectedNbrOfConversion = 4; sConfigInjected.InjectedNbrOfConversion = 4;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1; sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
sConfigInjected.AutoInjectedConv = DISABLE; sConfigInjected.AutoInjectedConv = DISABLE;
sConfigInjected.InjectedDiscontinuousConvMode = DISABLE; sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
sConfigInjected.InjectedOffset = 0; sConfigInjected.InjectedOffset = 0;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected); HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.InjectedRank = 2; sConfigInjected.InjectedRank = 2;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected); HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedRank = 3; sConfigInjected.InjectedRank = 3;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected); HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
sConfigInjected.InjectedRank = 4; sConfigInjected.InjectedRank = 4;
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected); HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
SET_BIT(hadc1.Instance->CR1, (ADC_CR1_JEOCIE)); // Enable end of injected conv irq SET_BIT(hadc1.Instance->CR1, (ADC_CR1_JEOCIE)); // Enable end of injected conv irq
// Run ADC internal calibration // Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK) while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK)
; ;
} }
/* ADC2 init function */ /* ADC2 init function */
static void MX_ADC2_Init(void) { static void MX_ADC2_Init(void) {
ADC_ChannelConfTypeDef sConfig; ADC_ChannelConfTypeDef sConfig;
ADC_InjectionConfTypeDef sConfigInjected; ADC_InjectionConfTypeDef sConfigInjected;
/**Common config /**Common config
*/ */
hadc2.Instance = ADC2; hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc2.Init.ContinuousConvMode = ENABLE; hadc2.Init.ContinuousConvMode = ENABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = ADC_CHANNELS; hadc2.Init.NbrOfConversion = ADC_CHANNELS;
HAL_ADC_Init(&hadc2); HAL_ADC_Init(&hadc2);
/**Configure Regular Channel /**Configure Regular Channel
*/ */
sConfig.Channel = TMP36_ADC2_CHANNEL; sConfig.Channel = TMP36_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5; sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
HAL_ADC_ConfigChannel(&hadc2, &sConfig); HAL_ADC_ConfigChannel(&hadc2, &sConfig);
sConfig.Channel = VIN_ADC2_CHANNEL; sConfig.Channel = VIN_ADC2_CHANNEL;
sConfig.Rank = ADC_REGULAR_RANK_2; sConfig.Rank = ADC_REGULAR_RANK_2;
HAL_ADC_ConfigChannel(&hadc2, &sConfig); HAL_ADC_ConfigChannel(&hadc2, &sConfig);
/**Configure Injected Channel /**Configure Injected Channel
*/ */
sConfigInjected.InjectedChannel = TIP_TEMP_ADC2_CHANNEL; sConfigInjected.InjectedChannel = TIP_TEMP_ADC2_CHANNEL;
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1; sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1;
sConfigInjected.InjectedNbrOfConversion = 4; sConfigInjected.InjectedNbrOfConversion = 4;
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1; sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
sConfigInjected.AutoInjectedConv = DISABLE; sConfigInjected.AutoInjectedConv = DISABLE;
sConfigInjected.InjectedDiscontinuousConvMode = DISABLE; sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
sConfigInjected.InjectedOffset = 0; sConfigInjected.InjectedOffset = 0;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected); HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_2; sConfigInjected.InjectedRank = ADC_INJECTED_RANK_2;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected); HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_3; sConfigInjected.InjectedRank = ADC_INJECTED_RANK_3;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected); HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
sConfigInjected.InjectedRank = ADC_INJECTED_RANK_4; sConfigInjected.InjectedRank = ADC_INJECTED_RANK_4;
HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected); HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
// Run ADC internal calibration // Run ADC internal calibration
while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK) while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK)
; ;
} }
/* I2C1 init function */ /* I2C1 init function */
static void MX_I2C1_Init(void) { static void MX_I2C1_Init(void) {
hi2c1.Instance = I2C1; hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 75000; hi2c1.Init.ClockSpeed = 75000;
// OLED doesnt handle >100k when its asleep (off). // OLED doesnt handle >100k when its asleep (off).
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
HAL_I2C_Init(&hi2c1); HAL_I2C_Init(&hi2c1);
} }
/* IWDG init function */ /* IWDG init function */
static void MX_IWDG_Init(void) { static void MX_IWDG_Init(void) {
hiwdg.Instance = IWDG; hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_256; hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
hiwdg.Init.Reload = 100; hiwdg.Init.Reload = 100;
#ifndef SWD_ENABLE #ifndef SWD_ENABLE
HAL_IWDG_Init(&hiwdg); HAL_IWDG_Init(&hiwdg);
#endif #endif
} }
/* TIM3 init function */ /* TIM3 init function */
static void MX_TIM3_Init(void) { static void MX_TIM3_Init(void) {
TIM_ClockConfigTypeDef sClockSourceConfig; TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig; TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC; TIM_OC_InitTypeDef sConfigOC;
htim3.Instance = TIM3; htim3.Instance = TIM3;
htim3.Init.Prescaler = 8; htim3.Init.Prescaler = 8;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 100; // 5 Khz PWM freq htim3.Init.Period = 100; // 5 Khz PWM freq
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 4mhz before div htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 4mhz before div
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; // Preload the ARR register (though we dont use this) htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; // Preload the ARR register (though we dont use this)
HAL_TIM_Base_Init(&htim3); HAL_TIM_Base_Init(&htim3);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig); HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig);
HAL_TIM_PWM_Init(&htim3); HAL_TIM_PWM_Init(&htim3);
HAL_TIM_OC_Init(&htim3); HAL_TIM_OC_Init(&htim3);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig); HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 50; // 50% duty cycle, that is AC coupled through the cap sConfigOC.Pulse = 50; // 50% duty cycle, that is AC coupled through the cap
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE; sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL); HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL);
GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitTypeDef GPIO_InitStruct;
/**TIM3 GPIO Configuration /**TIM3 GPIO Configuration
PWM_Out_Pin ------> TIM3_CH1 PWM_Out_Pin ------> TIM3_CH1
*/ */
GPIO_InitStruct.Pin = PWM_Out_Pin; GPIO_InitStruct.Pin = PWM_Out_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // We would like sharp rising edges
HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct);
#ifdef MODEL_TS100 #ifdef MODEL_TS100
// Remap TIM3_CH1 to be on PB4 // Remap TIM3_CH1 to be on PB4
__HAL_AFIO_REMAP_TIM3_PARTIAL(); __HAL_AFIO_REMAP_TIM3_PARTIAL();
#else #else
// No re-map required // No re-map required
#endif #endif
HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL); HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL);
} }
/* TIM3 init function */ /* TIM3 init function */
static void MX_TIM2_Init(void) { static void MX_TIM2_Init(void) {
/* /*
* We use the channel 1 to trigger the ADC at end of PWM period * We use the channel 1 to trigger the ADC at end of PWM period
* And we use the channel 4 as the PWM modulation source using Interrupts * And we use the channel 4 as the PWM modulation source using Interrupts
* */ * */
TIM_ClockConfigTypeDef sClockSourceConfig; TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig; TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC; TIM_OC_InitTypeDef sConfigOC;
// Timer 2 is fairly slow as its being used to run the PWM and trigger the ADC // Timer 2 is fairly slow as its being used to run the PWM and trigger the ADC
// in the PWM off time. // in the PWM off time.
htim2.Instance = TIM2; htim2.Instance = TIM2;
// dummy value, will be reconfigured by BSPInit() // dummy value, will be reconfigured by BSPInit()
htim2.Init.Prescaler = 2000; // 2 MHz timer clock/2000 = 1 kHz tick rate htim2.Init.Prescaler = 2000; // 2 MHz timer clock/2000 = 1 kHz tick rate
// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage // pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
// These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow" // These values give a rate of around 3.5 Hz for "fast" mode and 1.84 Hz for "slow"
htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
// dummy value, will be reconfigured by BSPInit() // dummy value, will be reconfigured by BSPInit()
htim2.Init.Period = 255 + 17 * 2; htim2.Init.Period = 255 + 17 * 2;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 8 MHz (x2 APB1) before divide htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; // 8 MHz (x2 APB1) before divide
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
htim2.Init.RepetitionCounter = 0; htim2.Init.RepetitionCounter = 0;
HAL_TIM_Base_Init(&htim2); HAL_TIM_Base_Init(&htim2);
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig); HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);
HAL_TIM_PWM_Init(&htim2); HAL_TIM_PWM_Init(&htim2);
HAL_TIM_OC_Init(&htim2); HAL_TIM_OC_Init(&htim2);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig); HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.OCMode = TIM_OCMODE_PWM1;
// dummy value, will be reconfigured by BSPInit() in the BSP.cpp // dummy value, will be reconfigured by BSPInit() in the BSP.cpp
sConfigOC.Pulse = 255 + 13 * 2; // 13 -> Delay of 7 ms sConfigOC.Pulse = 255 + 13 * 2; // 13 -> Delay of 7 ms
// 255 is the largest time period of the drive signal, and then offset ADC sample to be a bit delayed after this // 255 is the largest time period of the drive signal, and then offset ADC sample to be a bit delayed after this
/* /*
* It takes 4 milliseconds for output to be stable after PWM turns off. * It takes 4 milliseconds for output to be stable after PWM turns off.
* Assume ADC samples in 0.5ms * Assume ADC samples in 0.5ms
* We need to set this to 100% + 4.5ms * We need to set this to 100% + 4.5ms
* */ * */
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE; sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1);
sConfigOC.Pulse = 0; // default to entirely off sConfigOC.Pulse = 0; // default to entirely off
HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4); HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);
HAL_TIM_Base_Start_IT(&htim2); HAL_TIM_Base_Start_IT(&htim2);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
HAL_TIM_PWM_Start_IT(&htim2, TIM_CHANNEL_4); HAL_TIM_PWM_Start_IT(&htim2, TIM_CHANNEL_4);
HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0); HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0);
HAL_NVIC_EnableIRQ(TIM2_IRQn); HAL_NVIC_EnableIRQ(TIM2_IRQn);
} }
/** /**
* Enable DMA controller clock * Enable DMA controller clock
*/ */
static void MX_DMA_Init(void) { static void MX_DMA_Init(void) {
/* DMA controller clock enable */ /* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE(); __HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */ /* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */ /* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 5, 0); HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */ /* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0); HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */ /* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0); HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn); HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
} }
/** Configure pins as /** Configure pins as
@@ -390,37 +389,41 @@ static void MX_DMA_Init(void) {
PB1 ------> ADCx_IN9 PB1 ------> ADCx_IN9
*/ */
static void MX_GPIO_Init(void) { static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */ /* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */ /*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
/*Configure GPIO pins : PD0 PD1 */ /*Configure GPIO pins : PD0 PD1 */
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1; GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure peripheral I/O remapping */ /*Configure peripheral I/O remapping */
__HAL_AFIO_REMAP_PD01_ENABLE(); __HAL_AFIO_REMAP_PD01_ENABLE();
//^ remap XTAL so that pins can be analog (all input buffers off). //^ remap XTAL so that pins can be analog (all input buffers off).
// reduces power consumption // reduces power consumption
/* /*
* Configure All pins as analog by default * Configure All pins as analog by default
*/ */
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_15; GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_15;
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 |
#ifdef MODEL_TS100 #ifdef MODEL_TS100
GPIO_PIN_3 | GPIO_PIN_3 |
#endif #endif
GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15; GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13
| GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
#ifdef MODEL_TS100 #ifdef MODEL_TS100
#ifndef SWD_ENABLE #ifndef SWD_ENABLE
@@ -441,28 +444,28 @@ static void MX_GPIO_Init(void) {
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
#endif #endif
#else #else
/* TS80 */ /* TS80 */
/* Leave USB lines open circuit*/ /* Leave USB lines open circuit*/
#endif #endif
/*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */ /*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */
GPIO_InitStruct.Pin = KEY_B_Pin | KEY_A_Pin; GPIO_InitStruct.Pin = KEY_B_Pin | KEY_A_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : OLED_RESET_Pin */ /*Configure GPIO pin : OLED_RESET_Pin */
GPIO_InitStruct.Pin = OLED_RESET_Pin; GPIO_InitStruct.Pin = OLED_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
// Pull down LCD reset // Pull down LCD reset
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(30); HAL_Delay(30);
HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET);
} }
#ifdef USE_FULL_ASSERT #ifdef USE_FULL_ASSERT
void assert_failed(uint8_t *file, uint32_t line) { asm("bkpt"); } void assert_failed(uint8_t *file, uint32_t line) { asm("bkpt"); }

View File

@@ -18,9 +18,7 @@ void preRToSInit() {
HAL_Init(); HAL_Init();
Setup_HAL(); // Setup all the HAL objects Setup_HAL(); // Setup all the HAL objects
BSPInit(); BSPInit();
#ifdef I2C_SOFT
I2CBB::init(); I2CBB::init();
#endif
/* Init the IPC objects */ /* Init the IPC objects */
FRToSI2C::FRToSInit(); FRToSI2C::FRToSInit();
} }

View File

@@ -63,7 +63,7 @@ uint32_t TipThermoModel::convertTipRawADCToDegF(uint16_t rawADC) { return conver
// x = input value // x = input value
// output is x's interpolated y value // output is x's interpolated y value
int32_t LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int32_t x) { return y1 + (((((x - x1) * 1000) / (x2 - x1)) * (y2 - y1))) / 1000; } int32_t LinearInterpolate(int32_t x1, int32_t y1, int32_t x2, int32_t y2, int32_t x) { return y1 + (((((x - x1) * 1000) / (x2 - x1)) * (y2 - y1))) / 1000; }
#ifdef TEMP_uV_LOOKUP_HAKKO #ifdef TEMP_uV_LOOKUP_MHP30
const uint16_t uVtoDegC[] = { const uint16_t uVtoDegC[] = {
// //
// //
@@ -122,64 +122,6 @@ const uint16_t uVtoDegC[] = {
}; };
#endif #endif
#ifdef TEMP_uV_LOOKUP_TS80
const uint16_t uVtoDegC[] = {
//
//
530, 0, //
1282, 10, //
2034, 20, //
2786, 30, //
3538, 40, //
4290, 50, //
5043, 60, //
5795, 70, //
6547, 80, //
7299, 90, //
8051, 100, //
8803, 110, //
9555, 120, //
10308, 130, //
11060, 140, //
11812, 150, //
12564, 160, //
13316, 170, //
14068, 180, //
14820, 190, //
15573, 200, //
16325, 210, //
17077, 220, //
17829, 230, //
18581, 240, //
19333, 250, //
20085, 260, //
20838, 270, //
21590, 280, //
22342, 290, //
23094, 300, //
23846, 310, //
24598, 320, //
25350, 330, //
26103, 340, //
26855, 350, //
27607, 360, //
28359, 370, //
29111, 380, //
29863, 390, //
30615, 400, //
31368, 410, //
32120, 420, //
32872, 430, //
33624, 440, //
34376, 450, //
35128, 460, //
35880, 470, //
36632, 480, //
37385, 490, //
38137, 500, //
};
#endif
uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) { uint32_t TipThermoModel::convertuVToDegC(uint32_t tipuVDelta) {
if (tipuVDelta) { if (tipuVDelta) {
int noItems = sizeof(uVtoDegC) / (2 * sizeof(uint16_t)); int noItems = sizeof(uVtoDegC) / (2 * sizeof(uint16_t));

View File

@@ -163,6 +163,18 @@
#define USB_PD_VMAX 12 // Maximum voltage for PD to negotiate #define USB_PD_VMAX 12 // Maximum voltage for PD to negotiate
#endif #endif
#ifdef MODEL_MHP30
#define VOLTAGE_DIV 650 // Default for MHP30 TODO
#define PID_POWER_LIMIT 75 // Sets the max pwm power limit
#define CALIBRATION_OFFSET 900 // the adc offset in uV
#define POWER_LIMIT 65 // 65 watts default power limit
#define MAX_POWER_LIMIT 35 //
#define POWER_LIMIT_STEPS 2 //
#define OP_AMP_GAIN_STAGE OP_AMP_GAIN_STAGE_TS100 // TODO
#define TEMP_uV_LOOKUP_MHP30 // TODO
#define USB_PD_VMAX 20 // Maximum voltage for PD to negotiate
#endif
#ifdef MODEL_TS100 #ifdef MODEL_TS100
const int32_t tipMass = 65; // X10 watts to raise 1 deg C in 1 second const int32_t tipMass = 65; // X10 watts to raise 1 deg C in 1 second
const uint8_t tipResistance = 75; // x10 ohms, 7.5 typical for ts100 tips const uint8_t tipResistance = 75; // x10 ohms, 7.5 typical for ts100 tips
@@ -182,3 +194,10 @@ const uint8_t tipResistance = 45; // x10 ohms, 4.5 typical for ts80 tips
const uint32_t tipMass = 40; const uint32_t tipMass = 40;
const uint8_t tipResistance = 45; // x10 ohms, 4.5 typical for ts80 tips const uint8_t tipResistance = 45; // x10 ohms, 4.5 typical for ts80 tips
#endif #endif
#ifdef MODEL_MHP30
const uint32_t tipMass = 80;//TODO
const uint8_t tipResistance = 60; // x10 ohms, 6 typical
#endif