mirror of
https://github.com/Ralim/IronOS.git
synced 2025-02-26 07:53:55 +00:00
ADC Timing alignment bought in
This commit is contained in:
@@ -10,7 +10,6 @@ DMA_HandleTypeDef hdma_adc1;
|
||||
|
||||
I2C_HandleTypeDef hi2c1;
|
||||
|
||||
|
||||
IWDG_HandleTypeDef hiwdg;
|
||||
TIM_HandleTypeDef htim2;
|
||||
TIM_HandleTypeDef htim3;
|
||||
@@ -59,27 +58,29 @@ void SystemClock_Config(void) {
|
||||
|
||||
/**Initializes the CPU, AHB and APB busses clocks
|
||||
*/
|
||||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSI;
|
||||
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI
|
||||
| RCC_OSCILLATORTYPE_LSI;
|
||||
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
|
||||
RCC_OscInitStruct.HSICalibrationValue = 16;
|
||||
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
|
||||
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
||||
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
|
||||
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
|
||||
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; //64MHz
|
||||
HAL_RCC_OscConfig(&RCC_OscInitStruct);
|
||||
|
||||
/**Initializes the CPU, AHB and APB busses clocks
|
||||
*/
|
||||
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
||||
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
|
||||
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
||||
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
||||
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
||||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16;
|
||||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
|
||||
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16; //TIM 2,3,4,5,6,7,12,13,14
|
||||
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; //64 mhz to soem peripherals and adc
|
||||
|
||||
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
|
||||
|
||||
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
|
||||
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;
|
||||
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6; //6 or 8 are the only non overclocked options
|
||||
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
|
||||
|
||||
/**Configure the Systick interrupt time
|
||||
@@ -99,7 +100,6 @@ static void MX_ADC1_Init(void) {
|
||||
|
||||
ADC_ChannelConfTypeDef sConfig;
|
||||
ADC_InjectionConfTypeDef sConfigInjected;
|
||||
|
||||
/**Common config
|
||||
*/
|
||||
hadc1.Instance = ADC1;
|
||||
@@ -126,10 +126,15 @@ static void MX_ADC1_Init(void) {
|
||||
|
||||
/**Configure Injected Channel
|
||||
*/
|
||||
//F in = 10.66 MHz
|
||||
/*
|
||||
* Injected time is 1 delay clock + (12 adc cycles*4)+4*sampletime =~217 clocks = 0.2ms
|
||||
*
|
||||
* */
|
||||
sConfigInjected.InjectedChannel = ADC_CHANNEL_8;
|
||||
sConfigInjected.InjectedRank = 1;
|
||||
sConfigInjected.InjectedNbrOfConversion = 4;
|
||||
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_71CYCLES_5;
|
||||
sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_13CYCLES_5;
|
||||
sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
|
||||
sConfigInjected.AutoInjectedConv = DISABLE;
|
||||
sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
|
||||
@@ -141,14 +146,14 @@ static void MX_ADC1_Init(void) {
|
||||
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
|
||||
sConfigInjected.InjectedRank = 4;
|
||||
HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
|
||||
|
||||
//SET_BIT(hadc1.Instance->CR1, ( ADC_CR1_JEOCIE ));//Enable end of injected conv irq
|
||||
}
|
||||
|
||||
/* I2C1 init function */
|
||||
static void MX_I2C1_Init(void) {
|
||||
|
||||
hi2c1.Instance = I2C1;
|
||||
hi2c1.Init.ClockSpeed = 300000;//200Khz
|
||||
hi2c1.Init.ClockSpeed = 300000; //200Khz
|
||||
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
|
||||
hi2c1.Init.OwnAddress1 = 0;
|
||||
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
||||
@@ -178,10 +183,10 @@ static void MX_TIM3_Init(void) {
|
||||
TIM_OC_InitTypeDef sConfigOC;
|
||||
|
||||
htim3.Instance = TIM3;
|
||||
htim3.Init.Prescaler = 1;
|
||||
htim3.Init.Prescaler = 2;
|
||||
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim3.Init.Period = 100;
|
||||
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; //2mhz
|
||||
htim3.Init.Period = 100; //10 Khz PWM freq
|
||||
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; //4mhz before div
|
||||
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
HAL_TIM_Base_Init(&htim3);
|
||||
|
||||
@@ -229,10 +234,10 @@ static void MX_TIM2_Init(void) {
|
||||
|
||||
//Timer 2 is fairly slow as its being used to run the PWM and trigger the ADC in the PWM off time.
|
||||
htim2.Instance = TIM2;
|
||||
htim2.Init.Prescaler = 1500;
|
||||
htim2.Init.Prescaler = 2000; // pwm out is 10k, we want to run our PWM at around 100hz
|
||||
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
htim2.Init.Period = 120;
|
||||
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; //2mhz
|
||||
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; //4mhz before divide
|
||||
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
HAL_TIM_Base_Init(&htim2);
|
||||
|
||||
@@ -247,7 +252,12 @@ static void MX_TIM2_Init(void) {
|
||||
HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
|
||||
|
||||
sConfigOC.OCMode = TIM_OCMODE_PWM1;
|
||||
sConfigOC.Pulse = 110;
|
||||
sConfigOC.Pulse = 117;
|
||||
/*
|
||||
* It takes 4 milliseconds for output to be stable after PWM turns off.
|
||||
* Assume ADC samples in 0.5ms
|
||||
* We need to set this to 100% + 4.5ms
|
||||
* */
|
||||
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
|
||||
sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
|
||||
HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1);
|
||||
@@ -318,13 +328,15 @@ static void MX_GPIO_Init(void) {
|
||||
|
||||
/*Configure GPIO pins : PA0 PA1 PA2 PA3
|
||||
PA4 PA5 PA10 PA15 */
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_10
|
||||
| GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_15;
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3
|
||||
| GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12
|
||||
| GPIO_PIN_15;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
//Set PA 11 and PA 12 to GND to stop usb detection
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12;
|
||||
//Set PA 11 and PA 12 to GND to stop usb detection, 14 re-rused for debug
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_14 | GPIO_PIN_13;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_RESET);
|
||||
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_RESET);
|
||||
@@ -349,7 +361,7 @@ static void MX_GPIO_Init(void) {
|
||||
/*Configure GPIO pins : INT_Orientation_Pin INT_Movement_Pin */
|
||||
GPIO_InitStruct.Pin = INT_Orientation_Pin | INT_Movement_Pin;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP; //Technically the IMU is P-P but safer to pullup (very tiny current cost)
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP; //Technically the IMU is P-P but safer to pullup (very tiny current cost)
|
||||
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
||||
|
||||
/*Configure peripheral I/O remapping */
|
||||
|
||||
@@ -18,7 +18,7 @@ uint16_t getHandleTemperature() {
|
||||
// STM32 = 4096 count @ 3.3V input -> But
|
||||
// We oversample by 32/(2^2) = 8 times oversampling
|
||||
// Therefore 32768 is the 3.3V input, so 0.201416015625 mV per count
|
||||
// So we need to subtract an offset of 0.5V to center on 0C (2482 counts)
|
||||
// So we need to subtract an offset of 0.5V to center on 0C (2482*2 counts)
|
||||
//
|
||||
uint16_t result = getADC(0);
|
||||
if (result < 4964)
|
||||
@@ -29,21 +29,25 @@ uint16_t getHandleTemperature() {
|
||||
|
||||
}
|
||||
uint16_t tipMeasurementToC(uint16_t raw) {
|
||||
return ((raw - 532) / 33) + (getHandleTemperature() / 10) - CalibrationTempOffset;
|
||||
return ((raw - 532) / 33) + (getHandleTemperature() / 10)
|
||||
- CalibrationTempOffset;
|
||||
//Surprisingly that appears to be a fairly good linear best fit
|
||||
}
|
||||
uint16_t ctoTipMeasurement(uint16_t temp) {
|
||||
//We need to compensate for cold junction temp
|
||||
return ((temp - (getHandleTemperature() / 10) + CalibrationTempOffset) * 33) + 532;
|
||||
return ((temp - (getHandleTemperature() / 10) + CalibrationTempOffset) * 33)
|
||||
+ 532;
|
||||
}
|
||||
|
||||
uint16_t tipMeasurementToF(uint16_t raw) {
|
||||
return ((((raw - 532) / 33) + (getHandleTemperature() / 10) - CalibrationTempOffset) * 9) / 5 + 32;
|
||||
return ((((raw - 532) / 33) + (getHandleTemperature() / 10)
|
||||
- CalibrationTempOffset) * 9) / 5 + 32;
|
||||
|
||||
}
|
||||
uint16_t ftoTipMeasurement(uint16_t temp) {
|
||||
|
||||
return (((((temp - 32) * 5) / 9) - (getHandleTemperature() / 10) + CalibrationTempOffset) * 33) + 532;
|
||||
return (((((temp - 32) * 5) / 9) - (getHandleTemperature() / 10)
|
||||
+ CalibrationTempOffset) * 33) + 532;
|
||||
}
|
||||
|
||||
uint16_t getTipInstantTemperature() {
|
||||
@@ -116,7 +120,7 @@ uint8_t getTipPWM() {
|
||||
return htim2.Instance->CCR4;
|
||||
}
|
||||
void setTipPWM(uint8_t pulse) {
|
||||
PWMSafetyTimer = 100; //This is decremented in the handler for PWM so that the tip pwm is disabled if the PID task is not scheduled often enough.
|
||||
PWMSafetyTimer = 640; //This is decremented in the handler for PWM so that the tip pwm is disabled if the PID task is not scheduled often enough.
|
||||
if (pulse > 100)
|
||||
pulse = 100;
|
||||
if (pulse) {
|
||||
@@ -133,7 +137,7 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
||||
//Period has elapsed
|
||||
if (htim->Instance == TIM2) {
|
||||
//we want to turn on the output again
|
||||
PWMSafetyTimer--; //We decrement this safety value so that lockups in the scheduler will not cause the PWM to become locked in an active driving state.
|
||||
PWMSafetyTimer--; //We decrement this safety value so that lockups in the scheduler will not cause the PWM to become locked in an active driving state.
|
||||
//While we could assume this could never happened, its a small price for increased safety
|
||||
if (htim2.Instance->CCR4 && PWMSafetyTimer) {
|
||||
htim3.Instance->CCR1 = 50;
|
||||
@@ -153,6 +157,14 @@ void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
|
||||
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
|
||||
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
|
||||
htim3.Instance->CCR1 = 0;
|
||||
}
|
||||
|
||||
} /*else if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) {
|
||||
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_13, GPIO_PIN_RESET);
|
||||
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_14, GPIO_PIN_RESET);
|
||||
}*/
|
||||
}
|
||||
}
|
||||
|
||||
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc) {
|
||||
|
||||
}
|
||||
|
||||
@@ -842,16 +842,14 @@ void startPIDTask(void const *argument) {
|
||||
*/
|
||||
int32_t integralCount = 0;
|
||||
int32_t derivativeLastValue = 0;
|
||||
int32_t kp, ki, kd, kb;
|
||||
int32_t backoffOverflow = 0;
|
||||
kp = 20;
|
||||
ki = 50;
|
||||
kd = 40;
|
||||
kb = 0;
|
||||
int32_t kp, ki, kd;
|
||||
kp = 80;
|
||||
ki = 120;
|
||||
kd = 60;
|
||||
// REMEBER ^^^^ These constants are backwards
|
||||
// They act as dividers, so to 'increase' a P term, you make the number
|
||||
// smaller.
|
||||
const int32_t itermMax = 40;
|
||||
const int32_t itermMax = 60;
|
||||
for (;;) {
|
||||
uint16_t rawTemp = getTipRawTemp(1); // get instantaneous reading
|
||||
if (currentlyActiveTemperatureTarget) {
|
||||
@@ -876,34 +874,27 @@ void startPIDTask(void const *argument) {
|
||||
output += integralCount;
|
||||
if (kd)
|
||||
output -= (dInput / kd);
|
||||
if (kb)
|
||||
output -= backoffOverflow / kb;
|
||||
|
||||
if (output > 100) {
|
||||
backoffOverflow = output;
|
||||
output = 100; // saturate
|
||||
} else if (output < 0) {
|
||||
backoffOverflow = output;
|
||||
output = 0;
|
||||
} else
|
||||
backoffOverflow = 0;
|
||||
if (currentlyActiveTemperatureTarget < rawTemp) {
|
||||
output = 0;
|
||||
integralCount = 0;
|
||||
backoffOverflow = 0;
|
||||
derivativeLastValue = 0;
|
||||
}
|
||||
|
||||
/*if (currentlyActiveTemperatureTarget < rawTemp) {
|
||||
output = 0;
|
||||
}*/
|
||||
setTipPWM(output);
|
||||
derivativeLastValue = rawTemp; // store for next loop
|
||||
|
||||
} else {
|
||||
setTipPWM(0); // disable the output driver if the output is set to be off
|
||||
// elsewhere
|
||||
integralCount = 0;
|
||||
backoffOverflow = 0;
|
||||
derivativeLastValue = 0;
|
||||
}
|
||||
derivativeLastValue = rawTemp; // store for next loop
|
||||
|
||||
HAL_IWDG_Refresh(&hiwdg);
|
||||
osDelay(100); // 10 Hz temp loop
|
||||
osDelay(10); // 100 Hz temp loop
|
||||
}
|
||||
}
|
||||
#define MOVFilter 8
|
||||
@@ -1001,11 +992,10 @@ void startRotationTask(void const *argument) {
|
||||
* This task is used to manage rotation of the LCD screen & button re-mapping
|
||||
*
|
||||
*/
|
||||
if(PCBVersion==3)
|
||||
{
|
||||
for(;;)
|
||||
osDelay(5000);
|
||||
}
|
||||
if (PCBVersion == 3) {
|
||||
for (;;)
|
||||
osDelay(5000);
|
||||
}
|
||||
switch (systemSettings.OrientationMode) {
|
||||
case 0:
|
||||
lcd.setRotation(false);
|
||||
@@ -1024,7 +1014,7 @@ void startRotationTask(void const *argument) {
|
||||
for (;;) {
|
||||
|
||||
// a rotation event has occurred
|
||||
uint8_t rotation;
|
||||
uint8_t rotation = 0;
|
||||
if (PCBVersion == 2) {
|
||||
rotation = accel2.getOrientation();
|
||||
} else if (PCBVersion == 1) {
|
||||
|
||||
@@ -28,8 +28,9 @@ void HAL_MspInit(void) {
|
||||
|
||||
/**NOJTAG: JTAG-DP Disabled and SW-DP Enabled
|
||||
*/
|
||||
__HAL_AFIO_REMAP_SWJ_NOJTAG()
|
||||
;
|
||||
// __HAL_AFIO_REMAP_SWJ_NOJTAG()
|
||||
__HAL_AFIO_REMAP_SWJ_DISABLE(); /*Disable swd for debug io use*/
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user