mirror of
https://github.com/Ralim/IronOS.git
synced 2025-02-26 07:53:55 +00:00
Mimimum Buildable
This commit is contained in:
1
workspace/TS100/Core/BSP/BSP_Common.c
Normal file
1
workspace/TS100/Core/BSP/BSP_Common.c
Normal file
@@ -0,0 +1 @@
|
||||
#include "BSP.h"
|
||||
@@ -14,7 +14,8 @@ volatile uint8_t pendingPWM = 0;
|
||||
|
||||
//2 second filter (ADC is PID_TIM_HZ Hz)
|
||||
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
|
||||
void resetWatchdog() {
|
||||
void resetWatchdog()
|
||||
{
|
||||
HAL_IWDG_Refresh(&hiwdg);
|
||||
}
|
||||
#ifdef TEMP_NTC
|
||||
@@ -85,15 +86,19 @@ static const uint16_t NTCHandleLookup[] = {
|
||||
// 11292, 60, //
|
||||
};
|
||||
#endif
|
||||
uint16_t getHandleTemperature() {
|
||||
|
||||
uint16_t getHandleTemperature()
|
||||
{
|
||||
#ifdef TEMP_NTC
|
||||
//TS80P uses 100k NTC resistors instead
|
||||
//NTCG104EF104FT1X from TDK
|
||||
//For now not doing interpolation
|
||||
int32_t result = getADC(0);
|
||||
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t)));
|
||||
i++) {
|
||||
if (result > NTCHandleLookup[(i * 2) + 0]) {
|
||||
i++)
|
||||
{
|
||||
if (result > NTCHandleLookup[(i * 2) + 0])
|
||||
{
|
||||
return NTCHandleLookup[(i * 2) + 1] * 10;
|
||||
}
|
||||
}
|
||||
@@ -117,7 +122,8 @@ uint16_t getHandleTemperature() {
|
||||
#endif
|
||||
}
|
||||
|
||||
uint16_t getTipInstantTemperature() {
|
||||
uint16_t getTipInstantTemperature()
|
||||
{
|
||||
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits
|
||||
uint16_t readings[8];
|
||||
//Looking to reject the highest outlier readings.
|
||||
@@ -132,23 +138,29 @@ uint16_t getTipInstantTemperature() {
|
||||
readings[6] = hadc2.Instance->JDR3;
|
||||
readings[7] = hadc2.Instance->JDR4;
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
for (int i = 0; i < 8; i++)
|
||||
{
|
||||
sum += readings[i];
|
||||
}
|
||||
return sum; // 8x over sample
|
||||
}
|
||||
|
||||
uint16_t getTipRawTemp(uint8_t refresh) {
|
||||
if (refresh) {
|
||||
uint16_t getTipRawTemp(uint8_t refresh)
|
||||
{
|
||||
if (refresh)
|
||||
{
|
||||
uint16_t lastSample = getTipInstantTemperature();
|
||||
rawTempFilter.update(lastSample);
|
||||
return lastSample;
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
return rawTempFilter.average();
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
||||
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample)
|
||||
{
|
||||
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
||||
// Therefore we can divide down from there
|
||||
// Multiplying ADC max by 4 for additional calibration options,
|
||||
@@ -162,12 +174,14 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
||||
static uint8_t preFillneeded = 10;
|
||||
static uint32_t samples[BATTFILTERDEPTH];
|
||||
static uint8_t index = 0;
|
||||
if (preFillneeded) {
|
||||
if (preFillneeded)
|
||||
{
|
||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||
samples[i] = getADC(1);
|
||||
preFillneeded--;
|
||||
}
|
||||
if (sample) {
|
||||
if (sample)
|
||||
{
|
||||
samples[index] = getADC(1);
|
||||
index = (index + 1) % BATTFILTERDEPTH;
|
||||
}
|
||||
@@ -177,13 +191,15 @@ uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
|
||||
sum += samples[i];
|
||||
|
||||
sum /= BATTFILTERDEPTH;
|
||||
if (divisor == 0) {
|
||||
if (divisor == 0)
|
||||
{
|
||||
divisor = 1;
|
||||
}
|
||||
return sum * 4 / divisor;
|
||||
}
|
||||
|
||||
void setTipPWM(uint8_t pulse) {
|
||||
void setTipPWM(uint8_t pulse)
|
||||
{
|
||||
PWMSafetyTimer = 10; // This is decremented in the handler for PWM so that the tip pwm is
|
||||
// disabled if the PID task is not scheduled often enough.
|
||||
|
||||
@@ -193,9 +209,11 @@ void setTipPWM(uint8_t pulse) {
|
||||
// These are called by the HAL after the corresponding events from the system
|
||||
// timers.
|
||||
|
||||
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
||||
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
|
||||
{
|
||||
// Period has elapsed
|
||||
if (htim->Instance == TIM2) {
|
||||
if (htim->Instance == TIM2)
|
||||
{
|
||||
// we want to turn on the output again
|
||||
PWMSafetyTimer--;
|
||||
// We decrement this safety value so that lockups in the
|
||||
@@ -204,24 +222,32 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
|
||||
// While we could assume this could never happen, its a small price for
|
||||
// increased safety
|
||||
htim2.Instance->CCR4 = pendingPWM;
|
||||
if (htim2.Instance->CCR4 && PWMSafetyTimer) {
|
||||
if (htim2.Instance->CCR4 && PWMSafetyTimer)
|
||||
{
|
||||
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
|
||||
}
|
||||
} else if (htim->Instance == TIM1) {
|
||||
}
|
||||
else if (htim->Instance == TIM1)
|
||||
{
|
||||
// STM uses this for internal functions as a counter for timeouts
|
||||
HAL_IncTick();
|
||||
}
|
||||
}
|
||||
|
||||
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
|
||||
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
|
||||
{
|
||||
// This was a when the PWM for the output has timed out
|
||||
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
|
||||
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4)
|
||||
{
|
||||
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
|
||||
}
|
||||
}
|
||||
void unstick_I2C() {
|
||||
void unstick_I2C()
|
||||
{
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
int timeout = 100;
|
||||
int timeout_cnt = 0;
|
||||
@@ -245,7 +271,8 @@ void unstick_I2C() {
|
||||
HAL_GPIO_Init(SDA_GPIO_Port, &GPIO_InitStruct);
|
||||
HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET);
|
||||
|
||||
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin)) {
|
||||
while (GPIO_PIN_SET != HAL_GPIO_ReadPin(SDA_GPIO_Port, SDA_Pin))
|
||||
{
|
||||
//Move clock to release I2C
|
||||
HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET);
|
||||
asm("nop");
|
||||
@@ -290,20 +317,22 @@ void unstick_I2C() {
|
||||
HAL_I2C_Init(&hi2c1);
|
||||
}
|
||||
|
||||
uint8_t getButtonA() {
|
||||
return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ?
|
||||
1 : 0;
|
||||
uint8_t getButtonA()
|
||||
{
|
||||
return HAL_GPIO_ReadPin(KEY_A_GPIO_Port, KEY_A_Pin) == GPIO_PIN_RESET ? 1 : 0;
|
||||
}
|
||||
uint8_t getButtonB() {
|
||||
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ?
|
||||
1 : 0;
|
||||
uint8_t getButtonB()
|
||||
{
|
||||
return HAL_GPIO_ReadPin(KEY_B_GPIO_Port, KEY_B_Pin) == GPIO_PIN_RESET ? 1 : 0;
|
||||
}
|
||||
|
||||
void reboot() {
|
||||
void reboot()
|
||||
{
|
||||
|
||||
NVIC_SystemReset();
|
||||
}
|
||||
|
||||
void delay_ms(uint16_t count) {
|
||||
void delay_ms(uint16_t count)
|
||||
{
|
||||
HAL_Delay(count);
|
||||
}
|
||||
|
||||
@@ -10,14 +10,20 @@
|
||||
#include "systick.h"
|
||||
#include <IRQ.h>
|
||||
|
||||
void resetWatchdog() {
|
||||
//2 second filter (ADC is PID_TIM_HZ Hz)
|
||||
history<uint16_t, PID_TIM_HZ> rawTempFilter = {{0}, 0, 0};
|
||||
|
||||
void resetWatchdog()
|
||||
{
|
||||
//TODO
|
||||
}
|
||||
|
||||
uint16_t getTipInstantTemperature() {
|
||||
uint16_t getTipInstantTemperature()
|
||||
{
|
||||
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
sum += adc_inserted_data_read(ADC0, i);
|
||||
sum += adc_inserted_data_read(ADC1, i);
|
||||
}
|
||||
@@ -28,23 +34,113 @@ uint16_t getTipInstantTemperature() {
|
||||
// TODO
|
||||
// Handle callback of the PWM modulator to enable / disable the output PWM
|
||||
|
||||
void unstick_I2C() {
|
||||
uint16_t getTipRawTemp(uint8_t refresh)
|
||||
{
|
||||
if (refresh)
|
||||
{
|
||||
uint16_t lastSample = getTipInstantTemperature();
|
||||
rawTempFilter.update(lastSample);
|
||||
return lastSample;
|
||||
}
|
||||
else
|
||||
{
|
||||
return rawTempFilter.average();
|
||||
}
|
||||
}
|
||||
void unstick_I2C()
|
||||
{
|
||||
// TODO
|
||||
}
|
||||
|
||||
uint8_t getButtonA() {
|
||||
// TODO
|
||||
uint8_t getButtonA()
|
||||
{
|
||||
return (gpio_input_bit_get(KEY_A_GPIO_Port, KEY_A_Pin) == RESET) ? 1 : 0;
|
||||
}
|
||||
uint8_t getButtonB() {
|
||||
// TODO
|
||||
uint8_t getButtonB()
|
||||
{
|
||||
return (gpio_input_bit_get(KEY_B_GPIO_Port, KEY_B_Pin) == RESET) ? 1 : 0;
|
||||
}
|
||||
|
||||
void reboot() {
|
||||
void reboot()
|
||||
{
|
||||
// TODO
|
||||
for (;;) {
|
||||
for (;;)
|
||||
{
|
||||
}
|
||||
}
|
||||
|
||||
void delay_ms(uint16_t count) { delay_1ms(count); }
|
||||
|
||||
uint16_t getHandleTemperature()
|
||||
{
|
||||
#ifdef TEMP_NTC
|
||||
//TS80P uses 100k NTC resistors instead
|
||||
//NTCG104EF104FT1X from TDK
|
||||
//For now not doing interpolation
|
||||
int32_t result = getADC(0);
|
||||
for (uint32_t i = 0; i < (sizeof(NTCHandleLookup) / (2 * sizeof(uint16_t)));
|
||||
i++)
|
||||
{
|
||||
if (result > NTCHandleLookup[(i * 2) + 0])
|
||||
{
|
||||
return NTCHandleLookup[(i * 2) + 1] * 10;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
#endif
|
||||
#ifdef TEMP_TMP36
|
||||
// We return the current handle temperature in X10 C
|
||||
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
|
||||
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
|
||||
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
|
||||
// mV per count So we need to subtract an offset of 0.5V to center on 0C
|
||||
// (4964.8 counts)
|
||||
//
|
||||
int32_t result = getADC(0);
|
||||
result -= 4965; // remove 0.5V offset
|
||||
// 10mV per C
|
||||
// 99.29 counts per Deg C above 0C
|
||||
result *= 100;
|
||||
result /= 993;
|
||||
return result;
|
||||
#endif
|
||||
}
|
||||
|
||||
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample)
|
||||
{
|
||||
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
|
||||
// Therefore we can divide down from there
|
||||
// Multiplying ADC max by 4 for additional calibration options,
|
||||
// ideal term is 467
|
||||
#ifdef MODEL_TS100
|
||||
#define BATTFILTERDEPTH 32
|
||||
#else
|
||||
#define BATTFILTERDEPTH 8
|
||||
|
||||
#endif
|
||||
static uint8_t preFillneeded = 10;
|
||||
static uint32_t samples[BATTFILTERDEPTH];
|
||||
static uint8_t index = 0;
|
||||
if (preFillneeded)
|
||||
{
|
||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||
samples[i] = getADC(1);
|
||||
preFillneeded--;
|
||||
}
|
||||
if (sample)
|
||||
{
|
||||
samples[index] = getADC(1);
|
||||
index = (index + 1) % BATTFILTERDEPTH;
|
||||
}
|
||||
uint32_t sum = 0;
|
||||
|
||||
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
|
||||
sum += samples[i];
|
||||
|
||||
sum /= BATTFILTERDEPTH;
|
||||
if (divisor == 0)
|
||||
{
|
||||
divisor = 1;
|
||||
}
|
||||
return sum * 4 / divisor;
|
||||
}
|
||||
@@ -21,7 +21,7 @@
|
||||
#define ACCEL_LIS
|
||||
#define TEMP_TMP36
|
||||
#define POW_QC
|
||||
#define POW_PD
|
||||
// #define POW_PD
|
||||
#endif
|
||||
|
||||
#endif /* BSP_MINIWARE_MODEL_CONFIG_H_ */
|
||||
|
||||
@@ -2,10 +2,39 @@
|
||||
#include "BSP_Power.h"
|
||||
#include "QC3.h"
|
||||
#include "Settings.h"
|
||||
void power_probe() {
|
||||
//TODO -- Check for PD
|
||||
}
|
||||
#include "Pins.h"
|
||||
#include "fusbpd.h"
|
||||
#include "Model_Config.h"
|
||||
#include "policy_engine.h"
|
||||
#include "int_n.h"
|
||||
bool FUSB302_present = false;
|
||||
|
||||
void power_check() {
|
||||
//TODO -- Checks for PD?
|
||||
void power_check()
|
||||
{
|
||||
#ifdef POW_PD
|
||||
if (FUSB302_present)
|
||||
{
|
||||
//Cant start QC until either PD works or fails
|
||||
if (PolicyEngine::setupCompleteOrTimedOut() == false)
|
||||
{
|
||||
return;
|
||||
}
|
||||
if (PolicyEngine::pdHasNegotiated())
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef POW_QC
|
||||
QC_resync();
|
||||
#endif
|
||||
}
|
||||
uint8_t usb_pd_detect()
|
||||
{
|
||||
#ifdef POW_PD
|
||||
FUSB302_present = fusb302_detect();
|
||||
|
||||
return FUSB302_present;
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
303
workspace/TS100/Core/BSP/Pine64/fusb302b.cpp
Normal file
303
workspace/TS100/Core/BSP/Pine64/fusb302b.cpp
Normal file
@@ -0,0 +1,303 @@
|
||||
/*
|
||||
* PD Buddy Firmware Library - USB Power Delivery for everyone
|
||||
* Copyright 2017-2018 Clayton G. Hobbs
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "Model_Config.h"
|
||||
#ifdef POW_PD
|
||||
#include "BSP.h"
|
||||
#include "fusb302b.h"
|
||||
#include "I2C_Wrapper.hpp"
|
||||
#include <pd.h>
|
||||
#include "int_n.h"
|
||||
/*
|
||||
* Read a single byte from the FUSB302B
|
||||
*
|
||||
* cfg: The FUSB302B to communicate with
|
||||
* addr: The memory address from which to read
|
||||
*
|
||||
* Returns the value read from addr.
|
||||
*/
|
||||
static uint8_t fusb_read_byte(uint8_t addr)
|
||||
{
|
||||
uint8_t data[1];
|
||||
if (!FRToSI2C::Mem_Read(FUSB302B_ADDR, addr, (uint8_t *)data, 1))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
return data[0];
|
||||
}
|
||||
|
||||
/*
|
||||
* Read multiple bytes from the FUSB302B
|
||||
*
|
||||
* cfg: The FUSB302B to communicate with
|
||||
* addr: The memory address from which to read
|
||||
* size: The number of bytes to read
|
||||
* buf: The buffer into which data will be read
|
||||
*/
|
||||
static bool fusb_read_buf(uint8_t addr, uint8_t size, uint8_t *buf)
|
||||
{
|
||||
return FRToSI2C::Mem_Read(FUSB302B_ADDR, addr, buf, size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Write a single byte to the FUSB302B
|
||||
*
|
||||
* cfg: The FUSB302B to communicate with
|
||||
* addr: The memory address to which we will write
|
||||
* byte: The value to write
|
||||
*/
|
||||
static bool fusb_write_byte(uint8_t addr, uint8_t byte)
|
||||
{
|
||||
return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, (uint8_t *)&byte, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Write multiple bytes to the FUSB302B
|
||||
*
|
||||
* cfg: The FUSB302B to communicate with
|
||||
* addr: The memory address to which we will write
|
||||
* size: The number of bytes to write
|
||||
* buf: The buffer to write
|
||||
*/
|
||||
static bool fusb_write_buf(uint8_t addr, uint8_t size, const uint8_t *buf)
|
||||
{
|
||||
return FRToSI2C::Mem_Write(FUSB302B_ADDR, addr, buf, size);
|
||||
}
|
||||
|
||||
void fusb_send_message(const union pd_msg *msg)
|
||||
{
|
||||
if (!FRToSI2C::lock2())
|
||||
{
|
||||
return;
|
||||
}
|
||||
/* Token sequences for the FUSB302B */
|
||||
static uint8_t sop_seq[5] = {
|
||||
FUSB_FIFO_TX_SOP1,
|
||||
FUSB_FIFO_TX_SOP1,
|
||||
FUSB_FIFO_TX_SOP1,
|
||||
FUSB_FIFO_TX_SOP2,
|
||||
FUSB_FIFO_TX_PACKSYM};
|
||||
static const uint8_t eop_seq[4] = {
|
||||
FUSB_FIFO_TX_JAM_CRC,
|
||||
FUSB_FIFO_TX_EOP,
|
||||
FUSB_FIFO_TX_TXOFF,
|
||||
FUSB_FIFO_TX_TXON};
|
||||
|
||||
/* Take the I2C2 mutex now so there can't be a race condition on sop_seq */
|
||||
/* Get the length of the message: a two-octet header plus NUMOBJ four-octet
|
||||
* data objects */
|
||||
uint8_t msg_len = 2 + 4 * PD_NUMOBJ_GET(msg);
|
||||
|
||||
/* Set the number of bytes to be transmitted in the packet */
|
||||
sop_seq[4] = FUSB_FIFO_TX_PACKSYM | msg_len;
|
||||
|
||||
/* Write all three parts of the message to the TX FIFO */
|
||||
fusb_write_buf(FUSB_FIFOS, 5, sop_seq);
|
||||
fusb_write_buf(FUSB_FIFOS, msg_len, msg->bytes);
|
||||
fusb_write_buf(FUSB_FIFOS, 4, eop_seq);
|
||||
|
||||
FRToSI2C::unlock2();
|
||||
}
|
||||
|
||||
uint8_t fusb_read_message(union pd_msg *msg)
|
||||
{
|
||||
if (!FRToSI2C::lock2())
|
||||
{
|
||||
asm("bkpt");
|
||||
}
|
||||
static uint8_t garbage[4];
|
||||
uint8_t numobj;
|
||||
|
||||
// Read the header. If its not a SOP we dont actually want it at all
|
||||
// But on some revisions of the fusb if you dont both pick them up and read them out of the fifo, it gets stuck
|
||||
fusb_read_byte(FUSB_FIFOS);
|
||||
/* Read the message header into msg */
|
||||
fusb_read_buf(FUSB_FIFOS, 2, msg->bytes);
|
||||
/* Get the number of data objects */
|
||||
numobj = PD_NUMOBJ_GET(msg);
|
||||
/* If there is at least one data object, read the data objects */
|
||||
if (numobj > 0)
|
||||
{
|
||||
fusb_read_buf(FUSB_FIFOS, numobj * 4, msg->bytes + 2);
|
||||
}
|
||||
/* Throw the CRC32 in the garbage, since the PHY already checked it. */
|
||||
fusb_read_buf(FUSB_FIFOS, 4, garbage);
|
||||
|
||||
FRToSI2C::unlock2();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void fusb_send_hardrst()
|
||||
{
|
||||
|
||||
if (!FRToSI2C::lock2())
|
||||
{
|
||||
return;
|
||||
}
|
||||
/* Send a hard reset */
|
||||
fusb_write_byte(FUSB_CONTROL3, 0x07 | FUSB_CONTROL3_SEND_HARD_RESET);
|
||||
|
||||
FRToSI2C::unlock2();
|
||||
}
|
||||
|
||||
void fusb_setup()
|
||||
{
|
||||
GPIO_InitTypeDef GPIO_InitStruct;
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
|
||||
GPIO_InitStruct.Pin = GPIO_PIN_9;
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
|
||||
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
||||
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
||||
HAL_NVIC_SetPriority(EXTI9_5_IRQn, 12, 0);
|
||||
HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);
|
||||
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
|
||||
{
|
||||
if (!FRToSI2C::lock2())
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Fully reset the FUSB302B */
|
||||
fusb_write_byte(FUSB_RESET, FUSB_RESET_SW_RES);
|
||||
osDelay(2);
|
||||
if (!fusb_read_id())
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
/* Turn on all power */
|
||||
fusb_write_byte(FUSB_POWER, 0x0F);
|
||||
|
||||
/* Set interrupt masks */
|
||||
//Setting to 0 so interrupts are allowed
|
||||
fusb_write_byte(FUSB_MASK1, 0x00);
|
||||
fusb_write_byte(FUSB_MASKA, 0x00);
|
||||
fusb_write_byte(FUSB_MASKB, 0x00);
|
||||
fusb_write_byte(FUSB_CONTROL0, 0b11 << 2);
|
||||
|
||||
/* Enable automatic retransmission */
|
||||
fusb_write_byte(FUSB_CONTROL3, 0x07);
|
||||
//set defaults
|
||||
fusb_write_byte(FUSB_CONTROL2, 0x00);
|
||||
/* Flush the RX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL1,
|
||||
FUSB_CONTROL1_RX_FLUSH);
|
||||
|
||||
/* Measure CC1 */
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x07);
|
||||
osDelay(10);
|
||||
uint8_t cc1 = fusb_read_byte(FUSB_STATUS0) & FUSB_STATUS0_BC_LVL;
|
||||
|
||||
/* Measure CC2 */
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x0B);
|
||||
osDelay(10);
|
||||
uint8_t cc2 = fusb_read_byte(FUSB_STATUS0) & FUSB_STATUS0_BC_LVL;
|
||||
|
||||
/* Select the correct CC line for BMC signaling; also enable AUTO_CRC */
|
||||
if (cc1 > cc2)
|
||||
{
|
||||
fusb_write_byte(FUSB_SWITCHES1, 0x25);
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x07);
|
||||
}
|
||||
else
|
||||
{
|
||||
fusb_write_byte(FUSB_SWITCHES1, 0x26);
|
||||
fusb_write_byte(FUSB_SWITCHES0, 0x0B);
|
||||
}
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
|
||||
{
|
||||
FRToSI2C::unlock2();
|
||||
}
|
||||
fusb_reset();
|
||||
}
|
||||
|
||||
void fusb_get_status(union fusb_status *status)
|
||||
{
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
|
||||
{
|
||||
if (!FRToSI2C::lock2())
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read the interrupt and status flags into status */
|
||||
fusb_read_buf(FUSB_STATUS0A, 7, status->bytes);
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
|
||||
{
|
||||
FRToSI2C::unlock2();
|
||||
}
|
||||
}
|
||||
|
||||
enum fusb_typec_current fusb_get_typec_current()
|
||||
{
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
|
||||
{
|
||||
if (!FRToSI2C::lock2())
|
||||
{
|
||||
return fusb_tcc_none;
|
||||
}
|
||||
}
|
||||
/* Read the BC_LVL into a variable */
|
||||
enum fusb_typec_current bc_lvl = (enum fusb_typec_current)(fusb_read_byte(
|
||||
FUSB_STATUS0) &
|
||||
FUSB_STATUS0_BC_LVL);
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
|
||||
{
|
||||
FRToSI2C::unlock2();
|
||||
}
|
||||
return bc_lvl;
|
||||
}
|
||||
|
||||
void fusb_reset()
|
||||
{
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
|
||||
{
|
||||
if (!FRToSI2C::lock2())
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* Flush the TX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL0, 0x44);
|
||||
/* Flush the RX buffer */
|
||||
fusb_write_byte(FUSB_CONTROL1, FUSB_CONTROL1_RX_FLUSH);
|
||||
/* Reset the PD logic */
|
||||
// fusb_write_byte( FUSB_RESET, FUSB_RESET_PD_RESET);
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED)
|
||||
{
|
||||
FRToSI2C::unlock2();
|
||||
}
|
||||
}
|
||||
|
||||
bool fusb_read_id()
|
||||
{
|
||||
//Return true if read of the revision ID is sane
|
||||
uint8_t version = 0;
|
||||
fusb_read_buf(FUSB_DEVICE_ID, 1, &version);
|
||||
if (version == 0 || version == 0xFF)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
uint8_t fusb302_detect()
|
||||
{
|
||||
//Probe the I2C bus for its address
|
||||
return FRToSI2C::probe(FUSB302B_ADDR);
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -48,6 +48,10 @@ public:
|
||||
static void I2C_RegisterWrite(uint8_t address, uint8_t reg, uint8_t data);
|
||||
static uint8_t I2C_RegisterRead(uint8_t address, uint8_t reg);
|
||||
|
||||
//These are public locks that let code lock the bus for back-to-back operations
|
||||
static bool lock2();
|
||||
static void unlock2();
|
||||
|
||||
private:
|
||||
static bool lock();
|
||||
static void unlock();
|
||||
|
||||
@@ -6,7 +6,7 @@ TRANSLATION_SCRIPT="make_translation.py"
|
||||
# AVAILABLE_LANGUAGES will be calculating according to json files in $TRANSLATION_DIR
|
||||
AVAILABLE_LANGUAGES=()
|
||||
BUILD_LANGUAGES=()
|
||||
AVAILABLE_MODELS=("TS100" "TS80" "TS80P")
|
||||
AVAILABLE_MODELS=("TS100" "TS80" "TS80P" "Pinecil")
|
||||
BUILD_MODELS=()
|
||||
|
||||
usage() {
|
||||
|
||||
Reference in New Issue
Block a user